首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of oleate, spermine and chlorpromazine were assayed in the presence or absence of 0.15 M KCl on the translocation of phosphatidate phosphohydrolase activity from cytosol to endoplasmic reticulum membranes in liver homogenates obtained from rats aged 1, 30, 60, 180 and 360 days. Marked age-associated decreases in phosphatidate phosphohydrolase distribution onto the membranes were demonstrated under nearly all conditions. In liver homogenates taken from 1-day-old rats and incubated with 0.15 M KCl, most of the enzyme was active (associated with the membranes). Physiological salt concentration (0.15 M KCl) produced a 2-fold increase of oleate-induced translocation of phosphatidate phosphohydrolase activity in liver homogenates from 1-day-old rats; it had no effect on those from 60-day-old rats, and produced a notable decline in liver homogenates obtained from 180- and 360-day-old rats. The promoting effect of spermine on oleate-induced translocation of this enzyme activity was higher in younger rats when incubated in the absence of 0.15 M KCl. Chlorpromazine did not show its usual antagonizing effect on oleate-induced translocation of phosphatidate phosphohydrolase when added to homogenates taken from 1-day-old rats. The antagonizing effect was slightly apparent in liver homogenates from 30-day-old rats and was more pronounced in those from 60-day-old rats in which the values diminished to one-half and to one-third either in the presence or absence of 0.15 M KCl.  相似文献   

2.
Specific activity of the myelin enzyme, 2′:3′-cyclic-nucleotide 3′-phosphohydrolase (EC 3.1.4.37), increases 2- to 10-fold when sparsely inoculated cultures of C6 rat glioma cells are allowed to grow to high cell density. Cyclic-nucleotide phosphohydrolase specific activity is also induced in C6 cells and in oligodendrocytes by dibutyryl cyclic AMP or by agents that elevate intracellular cyclic AMP. In this report, we have compared the density-dependent induction of cyclic-nucleotide phosphohydrolase activity with the cyclic AMP-dependent induction. Dibutyryl cyclic AMP induced cyclic-nucleotide phosphohydrolase specific activity in both sparse and dense cultures which had very different density-dependent cyclic-nucleotide phosphohydrolase activities. Induction of both cyclic-nucleotide phosphohydrolase specific activity and intracellular cyclic AMP content by norepinephrine also occurred to a similar degree in sparse and dense cultures. Similar results were obtained for several clones of C6 cells, and for a clone of oligodendrocyte x C6 cell hybrids. Induction of cyclic-nucleotide phosphohydrolase by norepinephrine or dibutyryl cyclic AMP was not due to a change in cell density or rate of cell proliferation, nor did cell density have any appreciable effect on cyclic AMP content of the cells. These results show that regulation of cyclic-nucleotide phosphohydrolase activity in C6 cells involves two distinct mechanisms.  相似文献   

3.
The effect of polyamines (spermine, spermidine and putrescine) on the Mg2+-dependent phosphatidate phosphohydrolase was investigated. Phosphatidate phosphohydrolase activity was measured in the presence of aqueous dispersed phosphatidate as substrate, and the release of inorganic phosphate was taken as a measure of phosphatidate phosphohydrolase activity. In the presence of various polyamines there was activation of the Mg2+-dependent phosphatidate phosphohydrolase activity. Under this condition, the Km of enzyme towards phosphatidase decreased from 1.6 x 10(-4) to 9.8 x 10(-5) M and the Mg2+ requirement decreased from 5 to 0.5 mM. These polyvalent cations did not replace Mg2+, but potentiate the phosphohydrolase activity in the presence of Mg2+. The activation of Mg2+-dependent phosphatidate phosphohydrolase activity by polyamines was observed in the presence of 3-sn-phosphatidylcholine, suggesting that these modulators of phosphatidate phosphohydrolase activity may be acting through different mechanisms. These studies demonstrate that polyamines may be important regulators of Mg2+-dependent phosphatidate phosphohydrolase activity in adipose tissue.  相似文献   

4.
The effect of inorganic phosphate on biosynthesis of the polyene antibiotic levorin by Streptomyces levoris was studied. At phosphate concentration of 4.0 mM levorin biosynthesis is repressed by 90%, resulting in an increase of ATP and a condensed inorganic polyphosphates content in the producer cells. At phosphate concentration optimal for levorin production (0.04 mM) the level of intracellular ATP sharply falls by the beginning of the steady-state phase of the producer growth and that of polyphosphates decreases 3-6-fold. The inorganic phosphate exerts different effects on polyphosphate metabolism enzymes, such as polyphosphate: D-glucose-6-phosphotransferase, polyphosphate phosphohydrolase, tripolyphosphate phosphohydrolase, pyrophosphate phosphohydrolase, alkaline and acid phosphatase. The strongest effect of phosphate excess is observed in the case of polyphosphate: D-glucose-6-phosphotransferase, whose activity decreases 2-5-fold. The activity of this enzyme was shown to be correlated with the antibiotic accumulation. The data obtained are indicative of interrelationship between the polyphosphate metabolism and levorin biosynthesis.  相似文献   

5.
Cell homogenates of light-grown Ochromonas danica contained distinct non-specific non-phosphate-repressible acid and alkaline phosphohydrolase activities. Acid phosphohydrolase activity had a broad pH range of 2.0–5.0 and the optimum for alkaline phosphohydrolase activity was pH 8.6 Acid phosphohydrolase (pH 3.6) activity had an optimum temperature of 55°C; the alkaline enzyme activity had an optimum temperature of 37–40°C.  相似文献   

6.
Although adenine-requiring auxotrophs of Bacillus subtilis accumulate large quantities of inosine or hypoxanthine, or of both, they do not accumulate inosine-5'-monophosphate (IMP). Experiments directed at understanding this phenomenon were conducted with an adenineless auxotroph and with a mutant derived from it which lacked alkaline phosphohydrolase. It was found that B. subtilis contains four different phosphohydrolases. Only one is an extracellular enzyme; it is a 5'-nucleotide phosphohydrolase which can be inhibited by addition of CuSO(4) to the medium. Of the three cellular enzymes, only one, an acid phosphohydrolase, cannot attack 5'-nucleotides; this enzyme is not repressed by inorganic phosphate. One of the two remaining surface-bound enzymes is a nonspecific alkaline phosphohydrolase which attacks both 5'-nucleotides and p-nitrophenyl phosphate; this is the only phosphohydrolase that is markedly repressed by inorganic phosphate. The other surface-bound enzyme is a nonrepressible 5'-nucleotide phosphohydrolase with double pH optima: one at neutrality and the other near pH 9.0. The experiments indicate that the absence of IMP in the extracellular broth is due to degradation of internally accumulated IMP to inosine by the cellular 5'-nucleotide phosphohydrolase.  相似文献   

7.
Modification of microsomal membranes in vivo and in vitro results in changes of the glucose-6-phosphate and inorganic pyrophosphate phosphohydrolase activities of liver microsomal glucose-6-phosphate phosphohydrolase (EC 3.1.3.9). It was demonstrated that the glucose-6-phosphate phosphohydrolase activity of glucose-6-phosphatase depends on the content of phosphatidylethanolamine in the microsomal membranes, whereas the inorganic pyrophosphate phosphohydrolase activity seems to be dependent on the phosphatidylserine content. It is assumed that the regulation of the corresponding enzyme activities by these phospholipids is performed by the same allosteric mechanism in vitro and in vivo.  相似文献   

8.
The subcellular distribution of Mg2+-dependent phosphatidate phosphohydrolase in rat adipocytes between a soluble and a membrane-bound fraction was measured by using both centrifugal fractionation and a novel Millipore-filtration method. The relative proportion of the phosphohydrolase associated with the particulate fraction was increased on incubation of cells with noradrenaline or palmitate. Insulin on its own decreased the proportion of the phosphohydrolase that was particulate and abolished the effect of noradrenaline, but not that of palmitate. The effect of noradrenaline on phosphohydrolase distribution was rapid, the effect being maximal within 10 min. Noradrenaline exerted this effect with a similar concentration-dependence to its lipolytic effect. Inclusion of albumin in homogenization buffers decreased the proportion of the phosphohydrolase that was particulate, but did not abolish the effect of noradrenaline. There was limited correlation between the proportion of the phosphohydrolase that was particulate and the measured rate of triacylglycerol synthesis in adipocytes incubated under a variety of conditions. Starvation, streptozotocin-diabetes and hypothyroidism decreased the specific activities of the phosphohydrolase and glycerolphosphate acyltransferase in homogenates from epididymal fat-pads. Restoration of these activities in the diabetic state was seen after administration of insulin over 2 days or, in the short term, within 2 h after a single administration of insulin. Administration of thyroxine over 3 days caused restoration of these activities in the hypothyroid state. Starvation and diabetes increased the proportion of the phosphohydrolase found in the microsomal fraction. This change was not seen when albumin was present in homogenization buffers. The possible role of fatty acids as regulators of the intracellular translocation of the phosphohydrolase, together with the role of this enzyme in the regulation of triacylglycerol synthesis in adipose tissue, is discussed.  相似文献   

9.
L P Ermolaeva 《Ontogenez》1983,14(5):503-509
Glucose-6-phosphatase was shown to be polyfunctional in the liver of the developing chick embryo. Changes in the activity of glucose-6-phosphate phosphohydrolase did not correlate with the rate of gluconeogenesis. The activity of this enzyme increased from the 16th to the 20th day of embryogenesis. The activities of pyrophosphate-glucose phosphotransferase, carbamyl-phosphate-glucose phosphotransferase did not change during embryogenesis. The ratio of the activities of phosphohydrolase and phosphotransferases was characterized by the predominance of the phosphohydrolase activity. The values of latency of phosphohydrolase and phosphotransferases did not correlate with the rate of gluconeogenesis. Glucose-6-phosphate phosphohydrolase was found not only in the microsomal, but in the nuclear fraction as well. KM(G6P) of the enzyme of the nuclear fraction differed from KM of the microsomal enzyme.  相似文献   

10.
The influence of phospholipids on the activity of the soluble phosphatidate phosphohydrolase from rat liver was studied. Phosphatidylethanolamine stimulated the enzyme activity whereas phosphatidylglycerol, phosphatidylserine, and phosphatidylinositol were inhibitory. At a phospholipid concentration of 0.7 mg/ml, phosphatidylglycerol inhibited phosphatidate phosphohydrolase activity by 75%, while the enzyme activity was stimulated twofold in the presence of phosphatidylethanolamine. Both lysophosphatidylglycerol and lysophosphatidylethanolamine inhibited phosphatidate phosphohydrolase activity as did octylglucoside, sodium cholate, and Tween 20. The finding that phospholipids influence hepatic phosphatidate phosphohydrolase activity indicates that changes in the lipid environment may modulate the enzyme activity.  相似文献   

11.
The translocation of phosphatidate phosphohydrolase between the cytosol and the microsomal membranes was investigated by using a cell-free system from rat liver. Linoleate, alpha-linolenate, arachidonate and eicosapentenoate promoted the translocation to membranes with a similar potency to that of oleate. The phosphohydrolase that associated with the membranes in the presence of [14C]oleate or 1mM-spermine coincided on Percoll gradients with the peak of rotenone-insensitive NADH-cytochrome c reductase, and in the former case with a peak of 14C. Microsomal membranes were enriched with the phosphohydrolase activity by incubation with [14C]oleate or spermine and then incubated with albumin. The phosphohydrolase activity was displaced from the membranes by albumin, and this paralleled the removal of [14C]oleate from the membranes when this acid was present. Chlorpromazine also displaced phosphatidate phosphohydrolase from the membranes, but it did not displace [14C]oleate. The effects of spermine in promoting the association of the phosphohydrolase with the membranes was inhibited by ATP, GTP, CTP, AMP and phosphate. ATP at the same concentration did not antagonize the translocating effect of oleate. From these results and previous work, it was concluded that the binding of long-chain fatty acids and their CoA esters to the endoplasmic reticulum acts as a signal for more phosphatidate phosphohydrolase to associate with these membranes and thereby to enhance the synthesis of glycerolipids, especially triacylglycerol. The translocation of the phosphohydrolase probably depends on the increased negative charge on the membranes, which could also be donated by the accumulation of phosphatidate. Chlorpromazine could oppose the translocation by donating a positive charge to the membranes.  相似文献   

12.
Rat hepatocytes were incubated in monolayer culture for 8 h. Glucagon (10nM) increased the total phosphatidate phosphohydrolase activity by 1.7-fold. This effect was abolished by adding cycloheximide, actinomycin D or 500 pM-insulin to the incubations. The glucagon-induced increase was synergistic with that produced by an optimum concentration of 100 nM-dexamethasone. Theophylline (1mM) potentiated the effect of glucagon, but it did not affect the dexamethasone-induced increase in the phosphohydrolase activity. The relative proportion of the phosphohydrolase activity associated with membranes was decreased by glucagon when 0.15 mM-oleate was added 15 min before the end of the incubations to translocate the phosphohydrolase from the cytosol. This glucagon effect was not seen at 0.5 mM-oleate. Since glucagon also increased the total phosphohydrolase activity, the membrane-associated activity was maintained at 0.15 mM-oleate and was increased at 0.5 mM-oleate. This activity at both oleate concentrations was also increased in incubations that contained dexamethasone, particularly in the presence of glucagon. Insulin increased the relative proportion of phosphatidate phosphohydrolase that was associated with membranes at 0.15 mM-oleate, but not at 0.5 mM-oleate. It also decreased the absolute phosphohydrolase activity on the membranes at both oleate concentrations in incubations that also contained glucagon and dexamethasone. None of the hormonal combinations significantly altered the total glycerol phosphate acyltransferase activity. However, glucagon significantly increased the microsomal activities, and insulin had the opposite effect. Glucagon also decreased the mitochondrial acyltransferase activity. There was a highly significant correlation between the total phosphatidate phosphohydrolase activity and the synthesis of neutral lipids from glycerol phosphate and 0.5 mM-oleate in homogenates of cells from all of the hormonal combinations. Phosphatidate phosphohydrolase activity is increased in the long term by glucocorticoids and also by glucagon through cyclic AMP. In the short term, glucagon increases the concentration of fatty acid required to translocate the cytosolic reservoir of activity to the membranes on which phosphatidate is synthesized. Insulin opposes the combined actions of glucagon and glucocorticoids. The long-term events explain the large increases in the phosphohydrolase activity that occur in vivo in a variety of stress conditions. The expression of this activity depends on increases in the net availability of fatty acids and their CoA esters in the liver.  相似文献   

13.
Rat lung microsomes washed with increasing concentrations of NaCl show a displacement of protein from microsomes to the wash supernatant. Among the proteins removed from the microsomal surface was the Mg2+-dependent phosphatidate phosphohydrolase, while the Mg2+-independent activity remained associated with the microsomes. The Mg2+-dependent activity could be quantitatively assayed in the wash supernatant. Microsomes washed with increasing concentrations of NaCl showed a progressive impairment in the synthesis of labelled neutral lipid and phosphatidylcholine from [14C]glycerol 3-phosphate with a concomitant increase in the labelling of phosphatidic acid. The impairment was sigmoidal and correlated highly with the decrease in Mg2+-dependent phosphatidate phosphohydrolase activity. When Mg2+-dependent phosphatidate phosphohydrolase from wash supernatant was incubated with microsomes previously washed with high salt concentrations, the labelling of neutral lipid and phosphatidylcholine was returned to control levels. Labelling of neutral lipids and phosphatidylcholine could be restored upon addition of a cytosolic Mg2+-dependent phosphatidate phosphohydrolase isolated by gel filtration. Mg2+-independent phosphatidate phosphohydrolase isolated from cytosol was incapable of restoring the labelling of neutral lipids and phosphatidylcholine. These findings confirm that the Mg2+-dependent phosphatidate phosphohydrolase of rat lung is involved in pulmonary glycerolipid biosynthesis. The role of the Mg2+-independent phosphatidate phosphohydrolase activity remains unknown.  相似文献   

14.
The properties of Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities were investigated in different subcellular fractions in rat adipose tissue. Phosphatidate phosphohydrolase activity was measured in the presence of aqueous dispersed phosphatidate as substrate, and the release of inorganic phosphate was taken as a measure of phosphatidate phosphohydrolase activity. The Mg2+-dependent phosphatidate phosphohydrolase was inhibited in the presence of N-methyl- or N-ethylmaleimide, whereas the Mg2+-independent activity was unaffected by these agents. The Mg2+-dependent phosphatidate phosphohydrolase was more sensitive to proteolysis and to high temperature (55 °C) compared to the Mg2+-independent enzyme. The Mg2+-dependent phosphatidate phosphohydrolase activity was reduced significantly during aging without any appreciable effects on the Mg2+-independent phosphatidate phosphohydrolase activity. These studies demonstrate that, in addition to Mg2+-dependency, these two forms of phosphatidate phosphohydrolases differ in several respects irrespective of their location in the adipose cell.  相似文献   

15.
1. The effects of the intramuscular administration of glycerol and dihydroxyacetone (40mmol per kg body wt.), sorbitol and glucose (20mmol per kg body wt.) or NaCl (1.5mmol per kg body wt. in 10ml of water per kg body wt.) were investigated on soluble phosphatidate phosphohydrolase and certain metabolites in rat liver. 2. The effects of ethanol and glycerol on phosphatidate phosphohydrolase were also studied in isolated perfused livers. 3. The administration of glycerol, sorbitol and dihydroxyacetone in vivo increased hepatic phosphatidate phosphohydrolase activity by 137, 63 and 32% respectively in 4h. 4. A significant positive correlation was found between the hepatic sn-glycerol 3-phosphate concentration and phosphatidate phosphohydrolase after the administration of various substrates in vivo. 5. The soluble phosphatidate phosphohydrolase activity tended to increase during perfusions of isolated rat livers without added substrates, and neither ethanol nor glycerol produced additional effects. 6. The activity of soluble phosphatidate phosphohydrolase was 2.5 times higher in the livers of hyperthyroid rats than in normal rats. This activity was not influenced by intragastric ethanol or glycerol administration, nor was the concentration of sn-glycerol 3-phosphate changed by these compounds. 7. It is concluded that the ethanol-induced increase in hepatic phosphatidate phosphohydrolase may at least in part be mediated by the hepatic concentration of metabolites, probably by the concentration of sn-glycerol 3-phosphate.  相似文献   

16.
Lung contains both Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities. Addition of Triton X-100 (0.5%) or chlorpromazine (1 mM) leads to a marked increase in the total phosphatidate phosphohydrolase activity in rat lung microsomes (microsomal fractions), but a decrease in the Mg2+-dependent activity. These observations suggest that the Mg2+-independent activity is stimulated, whereas the Mg2+-dependent activity is inhibited. However, the possibility exists that Triton X-100 could stimulate the Mg2+-dependent enzymic activity in an Mg2+-independent manner. In addition, the positively charged amphiphilic drug could be replacing the enzyme's requirement for Mg2+. These two possibilities were examined by using subcellular fractions in which the Mg2+-dependent phosphatidate phosphohydrolase had been abolished by heat treatment at 55 degrees C for 15 min. Heat treatment does not affect the microsomal Mg2+-independent phosphohydrolase to any great extent. Since the 6-8-fold stimulations due to Triton X-100 and chlorpromazine are retained after heat treatment of this fraction, the Mg2+-independent activity must be involved. Addition of Triton X-100 and chlorpromazine to cytosol virtually abolishes the Mg2+-dependent phosphatidate phosphohydrolase activity and decreases the Mg2+-independent activity by half. Heat treatment also abolishes the Mg2+-dependent activity and decreases the Mg2+-independent activity by over half. The Mg2+-independent phosphatidate phosphohydrolase activity remaining after heat treatment was not affected by Triton X-100 or chlorpromazine. These studies demonstrate that Triton X-100 and chlorpromazine specifically stimulate the heat-stable Mg2+-independent phosphatidate phosphohydrolase activity in rat lung microsomes. In contrast, the heat-labile Mg2+-independent phosphatidate phosphohydrolase activities in cytosol are inhibited by these reagents. Triton X-100 and chlorpromazine inhibit the Mg2+-dependent phosphatidate phosphohydrolase activities in both rat lung microsomes and cytosol. These results are consistent with the view that a single Mg2+-dependent phosphatidate phosphohydrolase present in both microsomes and cytosol is specifically involved in glycerolipid metabolism.  相似文献   

17.
1. A rapid extraction and purification scheme was designed for the recovery of [3H]diacylglycerol formed during the assay of phosphatidate phosphohydrolase. 2. The importance of removing polyvalent cations, particularly Ca2+, from the phosphatidate and other reagents used in the assay of the phosphohydrolase activity was demonstrated. This was achieved mainly by treating the phosphatidate with a chelating resin and by adding 1 mM-EGTA and 1 mM-EDTA to the assays. 3. The activity of the phosphohydrolase in dialysed samples of the soluble and microsomal fractions of rat liver was very low. 4. Addition of optimum concentrations of MgCl2 resulted in a 110-167-fold stimulation in activity. 5. CaCl2 was also able to stimulate phosphohydrolase activity, but to a much smaller extent than MgCl2. 6. Chlorpromazine, an amphiphilic cation, inhibited the reaction when it was measured in these experiments by using a mixed emulsion of phosphatidylcholine and phosphatidate at pH 7.4. 7. Microsomal fractions that were preincubated with albumin contained very low activities of the Mg2+-dependent phosphohydrolase. When these were then incubated with the soluble fraction in the presence of oleate, the soluble phosphohydrolase attached to the microsomal membranes, and it retained its high dependency on Mg2+.  相似文献   

18.
1. Phosphatidate phosphohydrolase from the particle-free supernatant of rat liver was assayed by using emulsions of phosphatidate as substrate. 2. The inhibition of the phosphohydrolase by chlorpromazine was of a competitive type with respect to phosphatidate. The potency of various amphiphilic cationic drugs as inhibitors of this reaction was related to their partition coefficients into a phosphatidate emulsion. 3. The effect of chlorpromazine on the phosphohydrolase activity was complementary rather than antagonistic towards Mg2+. Chlorpromazine stimulated the phosphohydrolase activity in the absence of added Mg2+ and was able to replace the requirement for Mg2+. However, at optimum concentrations of Mg2+, chlorpromazine inhibited the reaction, as did Ca2+. The phosphohydrolase activity was also stimulated by Co2+ and to a lesser extent by Mn2+, Fe2+, Fe3+, Ca2+, spermine and spermidine when Mg2+ was not added to the assays. 4. It is concluded that the inhibition of phosphatidate phosphohydrolase by amphiphilic cations can largely be explained by the interaction of these compounds with phosphatidate, which changes the physical properties of the lipid, making it less available for conversion into diacylglycerol. 5. The implications of these results to the effects of amphiphilic cations in redirecting glycerolipid synthesis at the level of phosphatidate are discussed.  相似文献   

19.
The incubation of hepatocytes with 1-4mM-oleate increased the total activity of phosphatidate phosphohydrolase that was measured in the presence of Mg2+ to about 2-fold. This was accompanied by an increase in the proportion of the enzyme that was isolated with the particulate fractions. Conversely, the addition of up to 4mM-oleate decreased the recovery of phosphatidate phosphohydrolase in the cytosolic fraction from about 70% to 3% when hepatocytes were lysed with digitonin. Most of the increase in the membrane-associated phosphohydrolase activity was isolated after cell fractionation in the microsomal fraction that was enriched with the endoplasmic-reticulum marker arylesterase. It is proposed that the translocation of phosphatidate phosphohydrolase facilitates the increased synthesis of triacylglycerols in the liver when it is presented with an increased supply of fatty acids.  相似文献   

20.
Chronic ethanol ingestion induced a 47% increase in the specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (nucleoside-2':3'-cyclic-phosphate 2'-nucleotidohydrolase, EC 3.1.4.37) in whole mitochondria. Both inner and outer mitochondrial membranes showed increased (cyclic nucleotide)phosphohydrolase activity, but the inner was increased 94% compared to 67% for the outer. Techniques which disrupt membrane structure increased (cyclic nucleotide)phosphohydrolase activity. After these treatments, whole mitochondria from ethanol-treated animals still showed a 50% increase in activity. This increase may be related either to an inherent increase in the resistance of (cyclic nucleotide)phosphohydrolase to protein degradation or turnover, or to ethanol-induced membrane changes. An increase in (cyclic nucleotide)phosphohydrolase reaction medium pH was observed when freshly isolated, highly-coupled mitochondria were used. The total increase in pH was about 2-fold greater in the controls compared to the ethanol-treated mitochondria. It is suggested that the smaller initial increase in pH and the greater activity of (cyclic nucleotide)phosphohydrolase in the mitochondria from the ethanol-treated animals relate to previously observed changes in the lipid and protein composition of the mitochondrial membranes. In addition, (cyclic nucleotide)phosphohydrolase may represent an excellent marker for membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号