首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that umbilical artery (UA) absolute blood flow velocities measured by Doppler ultrasonography reflect placental volume blood flow (Q(UA)) and placental vascular resistance (R(UA)) in a late gestation fetal sheep model. In addition, we examined the relationships between umbilical artery absolute blood flow velocities and parameters of fetal cardiac function. Twenty-six sheep fetuses were instrumented at 112-132 days of gestation. After a 5-day recovery period, experiments were performed under general anesthesia in 16 normal fetuses, in 5 fetuses after maternal administration of phenylephrine, and in 5 fetuses after placental embolization. The Q(UA) and arterial blood pressures were measured using a transit-time ultrasonic flow probe and a catheter placed into the descending aorta, respectively. UA peak systolic velocity (PSV), end-diastolic velocity (EDV), time-averaged maximum velocity (TAMXV), pulsatility index (PI), mean velocity (V(mean)), fetal cardiac output, ventricular ejection forces, and the proportion of isovolumetric relaxation time (IRT%) in the cardiac cycle were measured with the use of Doppler ultrasonography. Significant positive linear correlations were found between UA EDV, TAMXV, and V(mean) versus Q(UA), whereas UA PI had a significant negative correlation with Q(UA). Significant negative correlations were shown between UA EDV, TAMXV, and V(mean) versus R(UA). A significant positive correlation was present between UA PI and R(UA). Doppler-derived UA parameters did not correlate with fetal arterial blood pressures, cardiac output, ventricular ejection forces or IRT%. In fetal sheep, Doppler-derived UA PI and absolute velocities, except PSV, are closely related to directly measured Q(UA) and R(UA), validating the use of noninvasive Doppler velocimetry in the assessment of placental circulation.  相似文献   

2.
Overexpression of type XIII collagen molecules with an 83-amino-acid residue in-frame deletion of part of the ectodomain leads to fetal lethality in Col13a1 (COL2del) transgenic mice. We characterize here the functional disturbances in the cardiovascular system of mouse fetuses overexpressing mutant type XIII collagen. Doppler ultrasonography was performed at 12.5 days of gestation on 33 fetuses resulting from heterozygous matings of seven female mice and on 16 fetuses from two matings between heterozygous and wild-type mice. Nine fetuses had atrioventricular valve regurgitation (AVVR), and all of them were transgene-positive. The fetuses with AVVR had a lower outflow mean velocity (V(mean); P < 0.005) and a greater proportion of isovolumetric relaxation time (IRT%) in the cardiac cycle (P < 0.0001) than those without AVVR, and their ductus venosus pulsatility indices for veins (DV PIV) and the umbilical artery pulsatility indices were increased. A positive correlation was found between IRT% and DV PIV, and a negative correlation was seen between outflow V(mean) and DV PIV. Morphological analysis of the heart revealed no differences between the two groups of fetuses, but histological analysis showed the trabeculation of the ventricles to be reduced and the myocardium to be thinner in the fetuses with AVVR. Based on in situ hybridization, type XIII collagen mRNAs were normal constituents of these structures. Moreover, a positive correlation was found between outflow V(mean) and myocardial thickness. IRT% and DV PIV correlated negatively with myocardial thickness. Thus, overexpression of mutant type XIII collagen results in mid-gestation cardiac dysfunction in mouse fetuses, and these disturbances in cardiac function may lead to death in utero.  相似文献   

3.
Myocardial ischemia has been associated with left ventricular (LV) postsystolic shortening. The combination of tissue Doppler imaging and high frame-rate acquisition of two-dimensional color flow makes it possible to study the interaction between LV wall motion and intraventricular flow propagation. The aim of this study was to examine in a clinical model the impact that acute myocardial ischemia and prior myocardial infarct might have on LV flow patterns and to explain the underlying mechanisms from the tissue Doppler data. LV flow propagation and tissue velocities during early diastole were studied in 18 healthy individuals, 17 patients with prior anterior myocardial infarct, and 16 patients before and during percutaneous coronary intervention (PCI) of the left anterior descending artery. Normal individuals had intraventricular flow propagation toward the apex during isovolumic relaxation. During this early diastolic time phase, myocardial velocities measured at mid- and apical septal segment were directed away from the apex. Before PCI, patients without myocardial infarction had similar findings as in normal individuals. In contrast, each patient with either prior myocardial infarction or PCI-induced acute ischemia had flow propagation opposite to normal individuals, and tissue velocities reversed toward the apex during early diastole. Reversal of early diastolic LV flow propagation in acute and chronic anterior myocardial ischemia reflects postsystolic shortening in the dyskinetic apical and septal myocardial segments.  相似文献   

4.
The metabolic adaptation of the hindlimb in the fetus to a reversible period of adverse intrauterine conditions and, subsequently, to a further episode of acute hypoxemia has been examined. Sixteen sheep fetuses were chronically instrumented with vascular catheters and transit-time flow probes. In nine of these fetuses, umbilical blood flow was reversibly reduced by 30% from baseline for 3 days (umbilical cord compression), while the remaining fetuses acted as sham-operated, age-matched controls. Acute hypoxemia was subsequently induced in all fetuses by reducing maternal fractional inspired oxygen concentration for 1 h. Paired hindlimb arteriovenous blood samples were taken at appropriate intervals during cord compression and acute hypoxemia, and by using femoral blood flow and the Fick principle, substrate delivery, uptake, and output were calculated. Umbilical cord compression reduced blood oxygen content and delivery to the hindlimb and increased hindlimb oxygen extraction and blood glucose and lactate concentration in the fetus. However, hindlimb glucose and oxygen consumption were unaltered during umbilical cord compression. In contrast, hindlimb oxygen delivery and uptake were significantly reduced in all fetuses during subsequent acute hypoxemia, but glucose extraction, oxygen extraction, and hindlimb lactate output significantly increased in sham-operated control fetuses only. Preexposure of the fetus to a temporary period of adverse intrauterine conditions alters the metabolic response of the fetal hindlimb to subsequent acute stress. Additional data suggest that circulating blood lactate may be derived from sources other than the fetal hindlimb under these circumstances. The lack of hindlimb lactate output during acute hypoxemia in umbilical cord-compressed fetuses, despite a significant fall in oxygen delivery to and uptake by the hindlimb, suggests that the fetal hindlimb may not respire anaerobically after exposure to adverse intrauterine conditions. hypoxia  相似文献   

5.
Fetuses from gilts with estrogen receptor (ESR) genotype AA (AA-AA and AA-AB) and BB (BB-AB and BB-BB) were compared at Day 35/36 of pregnancy, to examine whether fetal ESR genotype nested within maternal ESR genotype would affect fetal traits. Furthermore the relation of fetal body weight and fetal heart weight to various placental traits were evaluated relative to ESR genotype. Fetal and placental weight and length, and implantation surface area were not affected by fetal ESR genotype nested within maternal ESR genotype. Fetal weight was related similarly to placental length, placental weight, and implantation surface area: up to a certain threshold value (40 cm, 40 g and 250 cm2, respectively), an increase in the trait was associated with an increase of fetal weight. Thereafter, fetal weight did not change anymore. Thus, at Day 35/36 of pregnancy porcine fetuses seem to have a maximum growth potential. The percentage of AA-AA fetuses that had not reached this maximum growth potential was larger than of the other three genotype combinations studied, and therefore a higher subsequent fetal mortality may be expected in this group. Hearts of AA-AB fetuses were significantly heavier than those of BB-AB and BB-BB fetuses and tended to be heavier than those of AA-AA fetuses. The reason for this hypertrophy is unclear, but might be related to a difference in placental vascularity. Heart weight of fetuses from BB gilts increased with fetal weight, while heart weights of fetuses from AA gilts did not. Heart weight increased with an increase of placental length and implantation surface area up to 51 cm and 437 cm2, respectively, and thereafter decreased again. For BB-AB fetuses a similar relation was found between heart weight and placental weight, while heart weight of the other three genotype combinations remained unaffected as placental weight increased. The fetus and placenta are continuously changing during early pregnancy, therefore different mechanisms may change the demands for cardiac output. However, keeping in mind that placental size and blood volume are relatively large, placental vascularity and vascular development may play a major role. Therefore, further research on heart size, placental size and vascularity, relative to ESR genotype, is recommended.  相似文献   

6.
To test the hypothesis that coronary flow and coronary flow reserve are developmentally regulated, we used fluorescent microspheres to investigate the effects of acute (6 h) pulmonary artery banding (PAB) on baseline and adenosine-enhanced right (RV) and left ventricular (LV) blood flow in two groups of twin ovine fetuses (100 and 128 days of gestation, term 145 days, n = 6 fetuses/group). Within each group, one fetus underwent PAB to constrict the main pulmonary artery diameter by 50%, and the other twin served as a nonbanded control. Physiological measurements were made 6 h after the surgery was completed; tissues were then harvested for analysis of selected genes that may be involved in the early phase of coronary vascular remodeling. Within each age group, arterial blood gas values, heart rate, and mean arterial blood pressure were similar between control and PAB fetuses. Baseline endocardial blood flow in both ventricles was greater in 100 than 128-day fetuses (RV: 341 +/- 20 vs. 230 +/- 17 ml*min(-1)*100 g(-1); LV: 258 +/- 18 vs. 172 +/- 23 ml*min(-1)*100 g(-1), both P < 0.05). In both age groups, RV and LV endocardial blood flows increased significantly in control animals during adenosine infusion and were greater in PAB compared with control fetuses. After PAB, adenosine further increased RV blood flow in 128-day fetuses (from 416 +/- 30 to 598 +/- 33 ml*min(-1)*g(-1), P < 0.05) but did not enhance blood flow in 100-day animals (490 +/- 59 to 545 +/- 42 ml*min(-1)*100 g(-1), P > 0.2). RV vascular endothelial growth factor and Flk-1 mRNA levels were increased relative to controls (P < 0.05) in 128 but not 100-day PAB fetuses. We conclude that in the ovine fetus, developmentally related differences exist in 1) baseline myocardial blood flows, 2) the adaptive response of myocardial blood flow to acute systolic pressure load, and 3) the responses of selected genes involved in vasculogenesis to increased load in the fetal myocardium.  相似文献   

7.
To evaluate the effect of chronic beta 1-adrenoceptor blockade on physiological adaptation to asphyxia a study was done on exteriorized sheep fetuses of 127-142 days gestational age. Eleven pregnant ewes were infused with metoprolol for 5 days prior to experiment. Another 10 ewes were infused with saline and served as controls. Asphyxia was induced by intermittent complete obstruction of maternal placental blood flow. Fetal electro-cardiogram, heart rate, cardiac output, myocardial contractility and cerebral blood flow were measured together with blood pH, lactate and hypoxanthine. Neurophysiological responses were evaluated by changes in somatosensory evoked electroencephalogram. The beta 1-blocked fetuses showed less responsiveness in myocardial contractility and heart rate during reoxygenation. This curtailed reaction resulted in accelerated lactic acidosis, increased break-down of intracellular energy rich substances and impaired cerebral function. Nine of the ten controls survived the experiment and 8 of them regained their somatosensory evoked EEG potentials, whereas 7 of the 11 beta-blocked fetuses survived and only 3 regained original somatosensory evoked EEG potentials. It is concluded that beta 1-adrenoceptor blockade impairs the adaptive responses to asphyxia in the ovine fetus and decreases its ability to survive severe asphyxia.  相似文献   

8.
Recently, we showed that both acute metabolic acidosis and respiratory acidosis stimulate parathyroid hormone (PTH) secretion in the dog. To evaluate the specific effect of acidosis, ionized calcium (iCa) was clamped at a normal value. Because iCa values normally increase during acute acidosis, we now have studied the PTH response to acute metabolic and respiratory acidosis in dogs in which the iCa concentration was allowed to increase (nonclamped) compared with dogs with a normal iCa concentration (clamped). Five groups of dogs were studied: control, metabolic (clamped and nonclamped), and respiratory (clamped and nonclamped) acidosis. Metabolic (HCl infusion) and respiratory (hypoventilation) acidosis was progressively induced during 60 min. In the two clamped groups, iCa was maintained at a normal value with an EDTA infusion. Both metabolic and respiratory acidosis increased (P < 0.05) iCa values in nonclamped groups. In metabolic acidosis, the increase in iCa was progressive and greater (P < 0.05) than in respiratory acidosis, in which iCa increased by 0.04 mM and then remained constant despite further pH reductions. The increase in PTH values was greater (P < 0.05) in clamped than in nonclamped groups (metabolic and respiratory acidosis). In the nonclamped metabolic acidosis group, PTH values first increased and then decreased from peak values when iCa increased by > 0.1 mM. In the nonclamped respiratory acidosis group, PTH values exceeded (P < 0.05) baseline values only after iCa values stopped increasing at a pH of 7.30. For the same increase in iCa in the nonclamped groups, PTH values increased more in metabolic acidosis. In conclusion, 1) both metabolic acidosis and respiratory acidosis stimulate PTH secretion; 2) the physiological increase in the iCa concentration during the induction of metabolic and respiratory acidosis reduces the magnitude of the PTH increase; 3) in metabolic acidosis, the increase in the iCa concentration can be of sufficient magnitude to reverse the increase in PTH values; and 4) for the same degree of acidosis-induced hypercalcemia, the increase in PTH values is greater in metabolic than in respiratory acidosis.  相似文献   

9.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

10.
Pregnancy is associated with a significant increase in uteroplacental blood flow (UBF), which is responsible for delivering adequate nutrients and oxygen for fetal and placental growth. The present study was designed to determine the effects of vascular insufficiency on fetal and placental growth. Thirty-nine late-term pregnant ewes were instrumented to investigate the effects of chronic UBF reduction. Animals were split into three groups based on uterine blood flow, and all animals were killed on gestational day 138. UBF, which began at 851 +/- 74 ml/min (n = 39), increased in controls (C) to 1,409 +/- 98 ml/min (day 138 of gestation) and in the moderately restricted (R(M)) group to 986 +/- 69 ml/min. In the severely restricted (R(S)) group, UBF was only 779 +/- 79 ml/min on gestational day 138. This reduction in UBF significantly affected fetal body weight with R(M) fetuses weighing 3,685 +/- 178 g and R(S) fetuses weighing 2,920 +/- 164 g compared with C fetal weights of 4,318 +/- 208 g. Fetal brain weight was not affected, whereas ponderal index was significantly reduced in R(M) (2.94 +/- 0.09) and R(S) fetuses (2.49 +/- 0.08) compared with the value of the C fetuses (3.31 +/- 0.08). Placental weight was also significantly reduced in the R(M) group, being 302 +/- 24 g, whereas the R(S) group placenta weighed 274 +/- 61 g compared with the C values of 414 +/- 57 g. Fetal heart, liver, lung, and thymus were all significantly smaller in the R(S) group. Thus the present study shows a clear relationship between the level of UBF and both fetal and placental size. Furthermore, the observation that fetal brain weight was not affected, whereas fetal body weight was significantly reduced suggests that this experimental preparation may provide a useful model in which to study asymmetric fetal growth restriction.  相似文献   

11.
Coupled pacing (CP), a method for controlling ventricular rate during atrial fibrillation (AF), consists of a single electrical stimulation applied to the ventricles after each spontaneous activation. CP results in a mechanical contraction rate approximately one-half the rate during AF. Paired stimulation in which two electrical stimuli are delivered to the ventricles has also been proposed as a therapy for heart failure. Although paired stimulation enhances contractility, it greatly increases energy consumption. The primary hypothesis of the present study is that CP improves cardiac function during acute AF without a similar increase in energy consumption because of the reduced rate of ventricular contractions. In a canine model, CP was applied during four stages: sinus rhythm (SR), acute AF, cardiac dysfunction (CD), and AF in the presence of cardiac dysfunction. The rate of ventricular contraction decreased in all four stages as the result of CP. In addition, we determined the changes in external cardiac work, myocardial oxygen consumption, and myocardial efficiency in the each of four stages. CP partially reversed the effects of AF and CD on external cardiac work, whereas myocardial oxygen consumption increased only moderately. In all stages but SR, CP increased myocardial efficiency because of the marked increases in cardiac work compared with the moderate increases in total energy consumed. Thus this pacing therapy may be a viable therapy for patients with concurrent atrial fibrillation and heart failure.  相似文献   

12.
The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.  相似文献   

13.
Sympathetic nervous activation is a crucial compensatory mechanism in heart failure. However, excess catecholamine may induce cardiac dysfunction and beta-adrenergic desensitization. Although magnesium is known to be a cardioprotective agent, its beneficial effects on acute cardiac dysfunction remain to be elucidated. We examined the effects of magnesium on left ventricular (LV) dysfunction induced by a large dose of isoproterenol in dogs. Sixteen anesthetized dogs underwent a continuous infusion of isoproterenol (1 micro g.kg(-1).min(-1)) with or without a magnesium infusion (1 mg.kg(-1).min(-1)). The dose response to small doses of isoproterenol (0.025-0.2 micro g.kg(-1).min(-1)) was tested hourly. A large dose of isoproterenol decreased LV systolic function, increased the time constant of LV isovolumic relaxation, and suppressed the dose response to small doses of isoproterenol in a time-dependent manner. Magnesium significantly attenuated isoproterenol-induced LV systolic and diastolic dysfunction and preserved the dose response to isoproterenol. Serum-ionized calcium significantly decreased with a large dose of isoproterenol but was fully maintained at baseline level with magnesium. A large dose of isoproterenol increased serum lipid peroxide levels and serological markers of myocardial damage, which were significantly suppressed by magnesium. In conclusion, magnesium significantly attenuated excess isoproterenol-induced acute cardiac dysfunction and beta-adrenergic desensitization.  相似文献   

14.
The mechanisms that stimulate fetal heart growth during anemia are unknown. To examine the hypothesis that adrenal hormones contribute to this process, we determined the effects of adrenalectomy (Adx) on heart growth and the activation of cardiac mitogen-activated protein kinases (MAPKs) in the presence and absence of fetal anemia. To identify mechanisms contributing to the initiation of cardiac growth, the duration of anemia was limited to a period shorter than that previously described to result in increased cardiac mass. Four groups of fetal sheep were studied (Adx-Anemic, Adx-Control, Intact-Anemic, Intact-Control). Anemia was created by daily controlled hemorrhage for 5?days; hearts were collected for analysis at 133?d gestation (term 145?d). Cardiomyocyte morphometry, immunohistochemistry for Ki-67 (proliferation marker), and Western blotting for protein levels of MAPKs and proliferating cell nuclear antigen (PCNA) were performed. Blood pressure, heart rate, heart weight-to-body weight ratio, and cardiomyocyte length and width remained similar among groups throughout the study. PCNA levels in the Adx-Anemic group were twice as high as in any other group (both ventricles, p?< 0.05). Levels of phosphorylated extracellular signal-regulated kinase (ERK) were ~60% higher in the Intact-Anemic and Adx-Anemic groups, compared with the Intact-Control and Adx-Control groups (p?< 0.02). These results suggest that adrenal hormones may attenuate fetal cardiomyocyte proliferation in response to anemia (as evidenced by the increased PCNA in Adx-Anemic fetuses) and that phosphorylation of myocardial ERK results from fetal anemia, irrespective of the status of the fetal adrenal gland.  相似文献   

15.
There is emerging evidence that treatment with thyroid hormone (TH) can improve postischemic cardiac function. 3,5-Diiodothyropropionic acid (DITPA), a TH analog, has been proposed to be a safer therapeutic agent than TH because of its negligible effects on cardiac metabolism and heart rate. However, conflicting results have been reported for the cardiac effects of DITPA. Importantly, recent clinical trials demonstrated no symptomatic benefit in patients with DITPA despite some improved hemodynamic and metabolic parameters. To address these issues, dose-dependent effects of DITPA were investigated in mice for baseline cardiovascular effects and postischemic myocardial function and/or salvage. Mice were treated with subcutaneous DITPA at 0.937, 1.875, 3.75, or 7.5 mg·kg(-1)·day(-1) for 7 days, and the results were compared with untreated mice for ex vivo and/or in vivo myocardial ischemia-reperfusion (I/R). DITPA had no effects on baseline body temperature, body weight, or heart rate; however, it mildly increased blood pressure. In isolated hearts, baseline contractile function was significantly impaired in DITPA-pretreated mice; however, postischemic recovery was comparable between untreated and DITPA-treated groups. In vivo baseline cardiac parameters were significantly affected by DITPA, with increased ventricular dimensions and decreased contractile function. Importantly, DITPA-treated mice demonstrated high prevalence of fatal cardiac rhythm abnormalities during in vivo ischemia and/or reperfusion. There were no improvements in myocardial infarction and postischemic fractional shortening with DITPA. Myocardial sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), phospholamban (PLB), and heat shock protein (HSP) levels remained unchanged with DITPA treatment. Thus DITPA administration impairs baseline cardiac parameters in mice and can be fatal during in vivo acute myocardial I/R.  相似文献   

16.
To determine the capacity of the fetus to adapt to chronic O2 deficiency produced by decreased placental perfusion in the early development of growth retardation, we embolized the umbilical placental vascular bed of fetal sheep for a period of 9 days. Fetal umbilical placental embolization decreased arterial O2 content by 39%, decreased total placental blood flow by 33%, and produced a 20% reduction in mean fetal body weight. Neither the combined ventricular output nor the regional blood flow distribution was significantly different between the 8 growth-retarded and 7 normally grown fetuses despite the 39% decrease in fetal arterial O2 content. Thus a 33% reduction in total placental blood flow restricts normal fetal growth, but does not exceed the placental circulatory reserve capacity necessary to maintain normal basal metabolic oxygenation. Because the proportion of combined ventricular output to the placenta at rest is decreased in late IUGR fetuses but not in early IUGR fetuses, despite chronic oxygen deficiency, we conclude that the growth retarded fetus maintains a normal regional blood flow distribution until the placental circulatory reserve capacity is depleted.  相似文献   

17.
Fetal development is an important factor influencing the susceptibility of adults to metabolic diseases. In order to study the influence of fetal growth on further development in animal models like the rabbit, methods of measurement of fetal and placental size and viability must be established and validated. In this study, 42 New Zealand does bred naturally (N=12) or transferred with in vivo produced embryos (2, 4 or 6 embryos/doe) have been scanned every 2-3 days with a 7.5 MHz transabdominal probe from Day 7 post-coitum until term to measure fetal and placental growth. Vesicle, placental, fetal length and head size have thus been determined according to number of fetuses and time. In late gestation, the fetuses that were transferred in limited numbers to the uterus of does were significantly larger than their natural breeding counterparts probably due to reduced litter size.  相似文献   

18.
Although behavior of lymphatic vessels is analogous to that of ventricles, which completely relax between contractions, and blood vessels, which maintain a tonic constriction, the mixture of contractile properties can yield behavior unique to lymphatic vessels. In particular, because of their limited refractory period and slow rate of relaxation, lymphatic vessels lack the contractile properties that minimize summation in ventricles. We, therefore, hypothesized that lymphatic vessels transition to a state of summation when lymphatic vessel contraction frequency exceeds a critical value. We used an isovolumic, controlled-flow preparation to compare the time required for full relaxation with the time available to relax during diastole. We measured transmural pressure and diameter on segments of spontaneously contracting bovine mesenteric lymphatic vessels during 10 isovolumic volume steps. We found that beat-to-beat period (frequency(-1)) decreased with increases in diameter and that total contraction time was constant or slightly increased with diameter. We further found that the convergence of beat-to-beat period and contraction cycle duration predicted a critical transition value, beyond which the vessel does not have time to fully relax. This incomplete relaxation and resulting mechanical summation significantly increase active tension in diastole. Because this transition occurs within a physiological range, contraction summation may represent a fundamental feature of lymphatic vessel function.  相似文献   

19.
20.
Previous work from this laboratory demonstrated that the elevation of maternal plasma corticosteroid concentrations during pregnancy is important for the support of fetal development. Reducing ovine maternal plasma cortisol concentrations to nonpregnant levels stimulates homeostatic responses that defend fetal blood volume. The present study was designed to test the hypothesis that chronic decreases or increases in maternal plasma cortisol concentration alter uterine and placental blood flow and morphology. Three groups of pregnant ewes and their fetuses were chronically catheterized and studied: ewes infused with cortisol (1 mg.kg(-1).day(-1); high cortisol), ewes adrenalectomized and underreplaced with cortisol (0.5 mg.kg(-1).day(-1); low cortisol), and control ewes. The normal increment in uterine blood flow between 120 and 130 days was eliminated in the low-cortisol ewes; conversely, uterine blood flow was increased in the high-cortisol group compared with the control group. Fetal arterial blood pressure was increased in the high-cortisol group compared with controls, but there was no increase in fetal arterial pressure from 120 to 130 days of gestation in the low-cortisol group. The fetuses of both low-cortisol and high-cortisol groups had altered placental morphology, with increased proportions of type B placentomes, and overall reduced fetal placental blood flow. The rate of fetal somatic growth was impaired in both low-cortisol and high-cortisol groups compared with the fetuses in the intact group. The results of this study demonstrate that maternal plasma cortisol during pregnancy is an important contributor to the maternal environment supporting optimal conditions for fetal homeostasis and somatic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号