首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
核糖体蛋白质与核糖体RNA共同组成了核糖体,是合成蛋白质的细胞器。除参与蛋白质合成,核糖体蛋白质还具有广泛的核糖体外功能,如独立于核糖体外发挥调控基因转录、mRNA翻译、细胞的增殖、分化和凋亡等等。基于诸多的核糖体外功能,核糖体蛋白质与人类疾病密切相关,例如在先天性贫血、生长发育不全和肿瘤的发生发展过程中均发挥重要作用。本文对近年来核糖体蛋白质的核糖体外新功能及其相关疾病的研究进展作一综述。  相似文献   

2.
3.
A specific complex of 5 S rRNA and several ribosomal proteins is an integral part of ribosomes in all living organisms. Here we studied the importance of Escherichia coli genes rplE, rplR and rplY, encoding 5 S rRNA-binding ribosomal proteins L5, L18 and L25, respectively, for cell growth, viability and translation. Using recombineering to create gene replacements in the E. coli chromosome, it was shown that rplE and rplR are essential for cell viability, whereas cells deleted for rplY are viable, but grow noticeably slower than the parental strain. The slow growth of these L25-defective cells can be stimulated by a plasmid expressing the rplY gene and also by a plasmid bearing the gene for homologous to L25 general stress protein CTC from Bacillus subtilis. The rplY mutant ribosomes are physically normal and contain all ribosomal proteins except L25. The ribosomes from L25-defective and parental cells translate in vitro at the same rate either poly(U) or natural mRNA. The difference observed was that the mutant ribosomes synthesized less natural polypeptide, compared to wild-type ribosomes both in vivo and in vitro. We speculate that the defect is at the ribosome recycling step.  相似文献   

4.
The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel+ and rel- cells, under valyltRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer to the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel+ strain appear more labelled than those from the rel- strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene.  相似文献   

5.
Functional specificity among ribosomal proteins regulates gene expression   总被引:10,自引:0,他引:10  
Komili S  Farny NG  Roth FP  Silver PA 《Cell》2007,131(3):557-571
  相似文献   

6.
Using a mutant of Saccharomyces cerevisiae defective in the NAT1 gene, that encodes one of the NH2-terminal acetyltransferases, we have identified 14 ribosomal proteins whose electrophoretic mobility at pH 5.0 suggests they carry an additional charge, presumably due to the lack of NH2-terminal acetylation. At least 30 other ribosomal proteins from the mutant are electrophoretically normal. Attempted NH2-terminal analysis of most of the presumed acetylated proteins from wild type cells indicated that all were blocked. NH2-terminal analysis of the same proteins from the nat1 mutant strain yielded unique sequences. Each one carries an NH2-terminal serine. We conclude that these are normally acetylated due to the presence of the NAT1 gene product. It seems surprising that cells whose ribosomes have been altered to this degree grow rather well and synthesize the same spectrum of proteins as do wild type cells (Mullen, J. R., Kayne, P. S., Moerschell, R. P., Tsunasawa, S. Gribskov, M., Sherman, F., and Sternglanz, R. (1989) EMBO J. 8, 2067-2075). Finally, this analysis has provided the first sequence information available for several of the acetylated ribosomal proteins and for one non-acetylated ribosomal protein, which is clearly the product of the MFT1 gene (Garrett, J. M., Singh, K. K., Vonder Haar, R. A., and Emr. S. D. (1991) Mol. Gen. Gen. 225, 483-491).  相似文献   

7.
8.
The nomenclature and synthesis of acidic and basic ribosomal proteins of plant cell cultures are described, with special regard to ribosome biosynthesis under control and heat-shock conditions. Assembly and processing of preribosomes in the nucleolus require a defined set of ribosomal proteins binding to the nascent pre-rRNA chain. Others are added later on the maturation pathway, mostly in the cytoplasm. Although, under appropriate heat-shock conditions, formation of mature ribosomes is completely blocked, most of the typical ribosomal proteins are still detected in the nuclear fraction. They are constituents of heat-shock preribosomes, which can be processed to normal cytoplasmic ribosomes only if the cells are allowed to recover at 25°C shortly after the labeling period at 40°C. However, if hyperthermic conditions are maintained, the labeled pre-rRNP material is evidently partly broken down. It forms the growing amount of RNP granules (ribosomal wastage) characteristic of the dispersed nucleolus of heat-shocked cells. In addition to the ‘nucleolar’ ribosomal proteins, a few newly formed ribosomal proteins can also be detected in cytoplasmic ribosomes under heat-shock conditions. Most of them belong to the group of exchange proteins whose labeling continues even if pre-rRNA synthesis is blocked by actinomycin D.  相似文献   

9.
M Li  M S Center 《FEBS letters》1992,298(2-3):142-144
The ribosomal protein S25 gene is highly overexpressed in HL60 cells isolated for resistance to adriamycin. In contrast there is no overexpression of 3 other ribosomal genes which code for proteins S14, S17 and S24. Studies with an antibody against a synthetic peptide of the S25 protein show that although the S25 gene is overexpressed in resistant cells there is no corresponding increase in the levels of S25 protein. These results suggest that the r-protein levels are highly regulated by translational controls or protein turnover.  相似文献   

10.
Silver staining as an indicator of active ribosomal genes   总被引:1,自引:0,他引:1  
  相似文献   

11.
The synthesis of eucaryotic ribosomal proteins in vitro.   总被引:44,自引:0,他引:44  
J R Warner  C Gorenstein 《Cell》1977,11(1):201-212
  相似文献   

12.
Silver Staining as an Indicator of Active Ribosomal Genes   总被引:2,自引:0,他引:2  
  相似文献   

13.
Three groups of proteins can be clearly discriminated in the total protein of L cell polysomes by selective labelling in the presence of low doses of actinomycin D and two-dimensional polyacrylamide/dodecylsulfate gel electrophoresis followed by autoradiography: (a) structural ribosomal proteins which are not labelled in the presence of actinomycin D and form stained non-radioactive spot in gels; (b) exchangeable ribosomal proteins which are labelled in the presence of actinomycin D and stained radioactive spots; (c) non-ribosomal proteins which are detectable only by autoradiography of gels. The large and small subunits of L cell ribosomes contain respectively 45 and 34 ribosomal proteins with molecular weights less than or equal to 50 000; seven of the large subunit proteins and nine of the small subunit proteins are exchangeable. Most of the non-ribosomal proteins migrate in the region of the related to the separation of the ribosomal proteins of mammalian cells and the possible significance of the presence of non-ribosomal proteins in polysomes are discussed.  相似文献   

14.
The efficient assembly of ribosomes requires a balanced synthesis of ribosomal RNA and each ribosomal protein. In an attempt to establish the mechanisms responsible for such balanced synthesis we have altered the gene dosage for one of the components by introducing into yeast an autonomously replicating plasmid containing the gene tcm1, which codes for ribosomal protein L3. The plasmid is maintained at 5–10 copies per cell by selection for expression of its URA3 gene. The plasmid-containing cells transcribe 7.5 times as much L3 mRNA as control cells, maintain 3.5 times as much L3 mRNA as control cells and synthesize no more than 1.2 times as much L3 protein as control cells. We conclude that the balanced synthesis of ribosomal proteins is maintained by modulating both the efficiency of translation and the lifetime of their mRNAs.  相似文献   

15.
J L Woolford  L M Hereford  M Rosbash 《Cell》1979,18(4):1247-1259
Yeast mRNA enriched for ribosomal protein mRNA was obtained by isolating poly(A)+ small mRNA from small polysomes. A comparison of cell-free translation of this small mRNA and total mRNA, and electrophoresis of the products on two-dimensional gels which resolve most yeast ribosomal proteins, demonstrated that a 5-10 fold enrichment for ribosomal protein mRNA was obtained. One hundred different recombinant DNA molecules possibly containing ribosomal protein genes were selected by differential colony hybridization of this enriched mRNA and unfractionated mRNA to a bank of yeast pMB9 hybrid plasmids. After screening twenty-five of these candidates, five different clones were found which contain yeast ribosomal protein gene sequences. The yeast mRNAs complementary to these five plasmids code for 35S-methionine-labeled polypeptides which co-migrate on two-dimensional gels with yeast ribosomal proteins. Consistent with previous studies on ribosomal protein mRNAs, the amounts of mRNA complementary to three of these cloned genes are controlled by the RNA2 locus. Although two of the five clones contain more than one yeast gene, none contain more than one identifiable ribosomal protein gene. Thus there is no evidence for "tight" linkage of yeast ribosomal protein genes. Two of the cloned ribosomal protein genes are single-copy genes, whereas two other cloned sequences contain two different copies of the same ribosomal protein gene. The fifth plasmid contains sequences which are repeated in the yeast genome, but it is not known whether any or all of the ribosomal protein gene on this clone contains repetitive DNA.  相似文献   

16.
17.
Makarova KS  Ponomarev VA  Koonin EV 《Genome biology》2001,2(9):research0033.1-research003314

Background

Ribosomal proteins are encoded in all genomes of cellular life forms and are, generally, well conserved during evolution. In prokaryotes, the genes for most ribosomal proteins are clustered in several highly conserved operons, which ensures efficient co-regulation of their expression. Duplications of ribosomal-protein genes are infrequent, and given their coordinated expression and functioning, it is generally assumed that ribosomal-protein genes are unlikely to undergo horizontal transfer. However, with the accumulation of numerous complete genome sequences of prokaryotes, several paralogous pairs of ribosomal protein genes have been identified. Here we analyze all such cases and attempt to reconstruct the evolutionary history of these ribosomal proteins.

Results

Complete bacterial genomes were searched for duplications of ribosomal proteins. Ribosomal proteins L36, L33, L31, S14 are each duplicated in several bacterial genomes and ribosomal proteins L11, L28, L7/L12, S1, S15, S18 are so far duplicated in only one genome each. Sequence analysis of the four ribosomal proteins, for which paralogs were detected in several genomes, two of the ribosomal proteins duplicated in one genome (L28 and S18), and the ribosomal protein L32 showed that each of them comes in two distinct versions. One form contains a predicted metal-binding Zn-ribbon that consists of four conserved cysteines (in some cases replaced by histidines), whereas, in the second form, these metal-chelating residues are completely or partially replaced. Typically, genomes containing paralogous genes for these ribosomal proteins encode both versions, designated C+ and C-, respectively. Analysis of phylogenetic trees for these seven ribosomal proteins, combined with comparison of genomic contexts for the respective genes, indicates that in most, if not all cases, their evolution involved a duplication of the ancestral C+ form early in bacterial evolution, with subsequent alternative loss of the C+ and C- forms in different lineages. Additionally, evidence was obtained for a role of horizontal gene transfer in the evolution of these ribosomal proteins, with multiple cases of gene displacement 'in situ', that is, without a change of the gene order in the recipient genome.

Conclusions

A more complex picture of evolution of bacterial ribosomal proteins than previously suspected is emerging from these results, with major contributions of lineage-specific gene loss and horizontal gene transfer. The recurrent theme of emergence and disruption of Zn-ribbons in bacterial ribosomal proteins awaits a functional interpretation.  相似文献   

18.
Discoordinate expression of the yeast mitochondrial ribosomal protein MRP1   总被引:6,自引:0,他引:6  
We have examined expression of the protein coded within the MRP 1 locus of Saccharomyces cerevisiae. Direct evidence is provided for the assignment of the MRP1 gene product as a protein component of the small subunit of mitochondrial ribosomes. Further studies examined the extent to which the expression of the MRP1 protein is coordinated with the expression of other mitochondrial ribosomal components coded in the nuclear and mitochondrial genomes. Extra copies of the MRP1 gene were introduced into yeast cells to perturb expression from MRP1 relative to other mitochondrial ribosomal components to determine whether forms of regulation function to limit the accumulation of either MRP1 mRNA or protein under these conditions. Increases in MRP1 gene dosage were accompanied by substantial increases in both MRP1 mRNA and protein, indicating that their accumulation was not linked to the level of expression of other mitochondrial ribosomal components. This conclusion was confirmed by additional studies that showed that the accumulation of the MRP1 protein was unaffected in cells that did not express mitochondrially-encoded rRNAs. These results contrast with previous studies on the expression of two other mitochondrial ribosomal proteins indicating that regulatory properties of mitochondrial ribosomal proteins are quite diverse.  相似文献   

19.
The genes for ribosomal proteins S4, S13 or S15 were fused with the gene for staphylococcal protein A, or derivatives thereof (2A'-7A'). The gene fusions were introduced into Escherichia coli strains, mutated in the corresponding ribosomal protein gene, by transformation. These mutated ribosomal proteins cause a phenotype that can be complemented. Thus, the phenotype of the transformants was tested and the ribosomal proteins were analyzed. The S4 N-terminal fusion protein severely disturbed growth of both the mutant and the wild-type strains. The S13 C-terminal fusion protein was proteolyzed close to the fusion point, giving a ribosomal protein moiety that could assemble into the ribosome normally. S15 N-terminal fusion proteins complemented a cold-sensitive strain lacking protein S15 in its ribosomes. These fused proteins were assembled into active ribosomes. The position of S15 in the 30S ribosomal subunit is well known. Therefore, in structural studies of the ribosome in vivo, the S15 fusion proteins can be used as a physical reporter for S15.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号