首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient partial unfolding of proteins under native conditions may have significant consequences in the biochemical and biophysical properties of proteins. Native-state proteolysis offers a facile way to investigate the thermodynamic and kinetic accessibilities of partially unfolded forms (cleavable forms) under native conditions. However, determination of the structure of the cleavable form, which is populated only transiently, remains challenging. Although in some cases partially cleaved products from proteolysis provide information on the structure of this elusive form, proteolysis of many proteins does not accumulate detectable intermediates. Here, we describe a systematic approach to determining structures of cleavable forms by protein engineering and native-state proteolysis. By devising φc analysis, which is analogous to conventional φ analysis, we have determined the structure of the cleavable form of Escherichia coli maltose-binding protein (MBP), which does not accumulate any partially cleaved products. We mutated 10 buried residues in MBP to alanine and determined φc values from the effects of the mutations on global stability and proteolytic susceptibility. The result of this analysis suggests that two C-terminal helices in MBP are unfolded in their cleavable form. The effect of ligand binding on proteolytic susceptibility and C-terminal deletion mutations also confirms the proposed structure. Our approach and methodology are generally applicable not only in elucidating the mechanism of proteolysis but also in investigating other important processes involving partial unfolding under native conditions such as protein misfolding and aggregation.  相似文献   

2.
It is generally believed that unfolded or denatured proteins show random-coil statistics and hence their radius of gyration simply scales with solvent quality (or concentration of denaturant). Indeed, nearly all proteins studied thus far have been shown to undergo a gradual and continuous expansion with increasing concentration of denaturant. Here, we use fluorescence correlation spectroscopy (FCS) to show that while protein A, a multi-domain and predominantly helical protein, expands gradually and continuously with increasing concentration of guanidine hydrochloride (GdnHCl), the F(ab′)2 fragment of goat anti-rabbit antibody IgG, a multi-subunit all β-sheet protein does not show such continuous expansion behavior. Instead, it first expands and then contracts with increasing concentration of GdnHCl. Even more striking is the fact that the hydrodynamic radius of the most expanded F(ab′)2 ensemble, observed at 3-4 M GdnHCl, is ∼ 3.6 times that of the native protein. Further FCS measurements involving urea and NaCl show that the unusually expanded F(ab′)2 conformations might be due to electrostatic repulsions. Taken together, these results suggest that specific interactions need to be considered while assessing the conformational and statistical properties of unfolded proteins, particularly under conditions of low solvent quality.  相似文献   

3.
Ribonuclease HII from hyperthermophile Thermococcus kodakaraensis (Tk-RNase HII) is a kinetically robust monomeric protein. The conformational stability and folding kinetics of Tk-RNase HII were measured for nine mutant proteins in which a buried larger hydrophobic side chain is replaced by a smaller one (Leu/Ile to Ala). The mutant proteins were destabilized by 8.9 to 22.0 kJ mol− 1 as compared with the wild-type protein. The removal of each -CH2- group burial decreased the stability by 5.1 kJ mol− 1 on average in the mutant proteins of Tk-RNase HII examined. This is comparable with the value of 5.3 kJ mol− 1 obtained from experiments for proteins from organisms growing at moderate temperature. We conclude that the hydrophobic residues buried inside protein molecules contribute to the stabilization of hyperthermophilic proteins to a similar extent as proteins at normal temperature. In the folding experiments, the mutant proteins of Tk-RNase HII examined exhibited faster unfolding compared with the wild-type protein. These results indicate that the buried hydrophobic residues strongly contribute to the kinetic robustness of Tk-RNase HII. This is the first report that provides a practical cause of slow unfolding of hyperthermostable proteins.  相似文献   

4.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

5.
Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd2+, Cu2+, Zn2+ and Pb2+, with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions.  相似文献   

6.
Solá RJ  Griebenow K 《FEBS letters》2006,580(6):1685-1690
Chemical protein glycosylation was employed to sequentially modulate the structural dynamics of the serine protease alpha-chymotrypsin as evidenced from amide H/D exchange kinetics. The reduction in alpha-CT's structural dynamics at increasing glycan molar contents statistically correlated with the increased thermodynamic stability (T(m)) and reduced rate of enzyme catalysis (k(cat)) exhibited by the enzyme upon chemical glycosylation. Temperature-dependent experiments revealed that native-like structural dynamics and function could be restored for the glycosylated conjugates at temperature values close to their thermodynamic stability suggesting that the concept of "corresponding states" can be extended to glycoproteins. These results demonstrate the value of chemical glycosylation as a tool for studying the role of protein structural dynamics on protein biophysical properties; e.g. enzyme stability and function.  相似文献   

7.
Multiple molecular dynamics simulations with explicit solvent at room temperature and at 400 K were carried out to characterize designed ankyrin repeat (AR) proteins with full-consensus repeats. Using proteins with one to five repeats, the stability of the native structure was found to increase with the number of repeats. The C-terminal capping repeat, originating from the natural guanine-adenine-binding protein, was observed to denature first in almost all high-temperature simulations. Notably, a stable intermediate is found in experimental equilibrium unfolding studies of one of the simulated consensus proteins. On the basis of simulation results, this intermediate is interpreted to represent a conformation with a denatured C-terminal repeat. To validate this interpretation, constructs without C-terminal capping repeat were prepared and did not show this intermediate in equilibrium unfolding experiments. Conversely, the capping repeats were found to be essential for efficient folding in the cell and for avoiding aggregation, presumably because of their highly charged surface. To design a capping repeat conferring similar solubility properties yet even higher stability, eight point mutations adapting the C-cap to the consensus AR and adding a three-residue extension at the C-terminus were predicted in silico and validated experimentally. The in vitro full-consensus proteins were also compared with a previously published designed AR protein, E3_5, whose internal repeats show 80% identity in primary sequence. A detailed analysis of the simulations suggests that networks of salt bridges between β-hairpins, as well as additional interrepeat hydrogen bonds, contribute to the extraordinary stability of the full consensus.  相似文献   

8.
Mauricio Baez 《FEBS letters》2009,583(12):2054-2164
Escherichia coli phosphofructokinase-2 (Pfk-2) is a homodimer whose subunits consist of a large domain and an additional β-sheet that provides the interfacial contacts between the subunits, creating a β-barrel flattened-like structure with the adjacent subunit’s β-sheet. To determine how the structural organization of Pfk-2 determines its stability, the reversible unfolding of the enzyme was characterized under equilibrium conditions by enzymatic activity, circular dichroism, fluorescence and hydrodynamic measurements. Pfk-2 undergoes a cooperative unfolding/dissociation process with the accumulation of an expanded and unstructured monomeric intermediate with a marginal stability and a large solvent accessibility with respect to the native dimer.  相似文献   

9.
    
Maestro B  Sanz JM 《FEBS letters》2007,581(3):375-381
We have investigated the stability of the choline-binding module C-LytA against sodium dodecyl sulphate (SDS)-induced unfolding at pH 7.0 and 20 degrees C. A major intermediate with an unfolded N-terminal region accumulates at around 0.75 mM SDS, whereas 2.0 mM SDS was sufficient for a complete unfolding. This might be the first report of a protein being extensively unfolded by submicellar concentrations of SDS, occurring through formation of detergent clusters on the protein surface. All transitions were reversible upon SDS complexation with beta-cyclodextrin, allowing the calculation of thermodynamic parameters. A model for the unfolding of C-LytA by SDS is presented and compared to a previous denaturation scheme by guanidine hydrochloride.  相似文献   

10.
Schistosomiasis is an important parasitic disease, with about 240 million people infected worldwide. Humans and animals can be infected, imposing an enormous social and economic burden. The only drug available for chemotherapy, praziquantel, does not control reinfections, and an efficient vaccine for prophylaxis is still missing. However, the tegumental protein Sm29 of Schistosoma mansoni was shown to be a promising antigen to compose an anti-schistosomiasis vaccine. Though, recombinant Sm29 is expressed in Escherichia coli as insoluble inclusion bodies requiring an efficient process of refolding, thus, hampering its production in large scale. We present in this work studies to refold the recombinant Sm29 using high hydrostatic pressure, a mild condition to dissociate aggregated proteins, leading to refolding on a soluble conformation. Our studies resulted in high yield of rSm29 (73%) as a stably soluble and structured protein. The refolded antigen presented protective effect against S. mansoni development in immunized mice. We concluded that the refolding process by application of high hydrostatic pressure succeeded, and the procedure can be scaled-up, allowing industrial production of Sm29.  相似文献   

11.
Metabolic plasticity of Mycobacterium renders high degree of adaptive advantages in the persistence through the upregulation of glyoxylate shunt. The malate synthase (MS), an important enzyme of the shunt belongs to the G isoform and expressed predominantly as monomer. Here we did a comparative unfolding studies of two homologous MS from Mycobacterium tuberculosis (MtbMS) and Escherichia coli (ecMS) using various biophysical techniques. Despite having high sequence identities, they show different structural, stability and functional properties. The study suggests that the differences in the stability and unfolding of the two enzymes are by virtue of differential electrostatic modulation unique to their respective molecular assembly.  相似文献   

12.
The bindings of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane·4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333) with β-lactoglobulin (β-LG) were determined in aqueous solution. FTIR, UV-vis, CD and fluorescence spectroscopic methods as well as molecular modeling were used to determine the polyamine binding sites and the effect of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind β-LG via both hydrophilic and hydrophobic contacts. Stronger polyamine-protein complexes formed with synthetic polyamines than biogenic polyamines, with overall binding constants of Kspm-β-LG = 3.2(±0.6) × 104 M−1, Kspmd-β-LG = 1.8(±0.5) × 104 M−1, KBE-333-β-LG = 5.8(±0.3) × 104 M−1 and KBE-3333-β-LG = 6.2(±0.05) × 104 M−1. Molecular modeling showed the participation of several amino acids in the polyamine complexes with the following order of polyamine-protein binding affinity: BE-3333 > BE-333 > spermine > spermidine, which correlates with their positively charged amino group content. Alteration of protein conformation was observed with a reduction of β-sheet from 57% (free protein) to 55-51%, and a major increase of turn structure from 13% (free protein) to ∼21% in the polyamine-β-LG complexes, indicating a partial protein unfolding.  相似文献   

13.
In recent years great interest has been generated in the process of protein folding, and the formation of intermediates during the folding process has been proven with new experimental strategies. In the present work, we have examined the molten globule state of Bacillus licheniformis alpha-amylase (BLA) by intrinsic fluorescence and circular dichroism spectra, 1-anilino naphthalene-8-sulfonate (ANS) binding and proteolytic digestion by pepsin, for comparison to its mesophilic counterpart, Bacillus amyloliquefaciens alpha-amylase (BAA). At pH 4.0, both enzymes acquire partially folded state which show characteristics of molten globule state. They unfold in such a way that their hydrophobic surfaces are exposed to a greater extent compared to the native forms. Chemical denaturation studies by guanidine hydrochloride and proteolytic digestion with pepsin show that molten globule state of BLA is more stable than from BAA. Results from gel filtration indicate that BAA has the same compactness at pH 4.0 and 7.5. However, molten globule state of BLA is less compact than its native state. The effects of polyols such as trehalose, sorbitol and glycerol on refolding of enzymes from molten globule to native state were also studied. These polyols are effective on refolding of mesophilic alpha-amylase but only slightly effect on BLA refolding. In addition, the folding pathway and stability of intermediate state of the thermophilic and the mesophilic alpha-amylases are discussed.  相似文献   

14.
Local structural and dynamic modulations due to small environmental perturbations reflect the adaptability of the protein to different interactors. We have investigated here the preferential local perturbations in Dynein light chain protein (DLC8), a cargo adapter, by sub-denaturing urea concentrations. Equilibrium unfolding experiments by optical spectroscopic methods indicated a two state like unfolding of DLC8 dimer, with the transition mid-point occurring around 8.6 M urea. NMR studies identified the β3 and β4 strands, N-, C- terminal regions, loops connecting β1 to α1, α1 to α2 and β3 to β4 as the soft targets of urea perturbation and thus indicated potential unfolding initiation sites. Native-state hydrogen exchange studies suggested the unfolding to traverse from the edges towards the centre of the secondary structural elements. At 6 M urea the whole protein chain acts like a cooperative unit. These observations are expected to have important implications for the protein's multiple functions.  相似文献   

15.
Cytochrome c has served as a paradigm for the study of protein stability, folding, and molecular evolution, but it remains unclear how these aspects of the protein are related. For example, while the bovine and equine cytochromes c are known to have different stabilities, and possibly different folding mechanisms, it is not known how these differences arise from just three amino acid substitutions introduced during divergence. Using site-selectively incorporated carbon-deuterium bonds, we show that like the equine protein, bovine cytochrome c is induced to unfold by guanidine hydrochloride via a stepwise mechanism, but it does not populate an intermediate as is observed with the equine protein. The increased stability also results in more similar free energies of unfolding observed at different sites within the protein, giving the appearance of a more concerted mechanism. Furthermore, we show that the differences in stability and folding appear to result from a single amino acid substitution that stabilizes a helix by allowing for increased solvation of its N-terminus.  相似文献   

16.
The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.  相似文献   

17.
Hepatitis C virus encodes an autoprotease, NS2-3, which is required for processing of the viral polyprotein between the non-structural NS2 and NS3 proteins. This protease activity is vital for the replication and assembly of the virus and therefore represents a target for the development of anti-viral drugs. The mechanism of this auto-processing reaction is not yet clear but the protease activity has been shown to map to the C-terminal region of NS2 and the N-terminal serine protease region of NS3. The NS2-3 precursor can be expressed in Escherichia coli as inclusion bodies, purified as denatured protein and refolded, in the presence of detergents and the divalent metal ion zinc, into an active form capable of auto-cleavage. Here, intrinsic tryptophan fluorescence has been used to assess refolding in the wild-type protein and specific active site mutants. We also investigate the effects on protein folding of alterations to the reaction conditions that have been shown to prevent auto-cleavage. Our data demonstrate that these active site mutations do not solely affect the cleavage activity of the HCV NS2-3 protease but significantly affect the integrity of the global protein fold.  相似文献   

18.
The dimensions of a denatured protein, fully reduced ribonuclease A (r-RNase A), have been measured using synchrotron-based small angle X-ray scattering. The radius of gyration, 34-35 A, is unchanged from 0-6 M guanidinium chloride and from 20-90 degrees C at pH 2.5, and agrees with the known scaling behavior for a multitude of chemically denatured states. The polypeptide is behaving as a statistical coil in the non-interacting, high-temperature limit.  相似文献   

19.
    
Structural perturbation of alpha-crystallin is shown to enhance its molecular chaperone-like activity in preventing aggregation of target proteins. We demonstrate that arginine, a biologically compatible molecule that is known to bind to the peptide backbone and negatively charged side-chains, increases the chaperone-like activity of calf eye lens alpha-crystallin as well as recombinant human alphaA- and alphaB-crystallins. Arginine-induced increase in the chaperone activity is more pronounced for alphaB-crystallin than for alphaA-crystallin. Other guanidinium compounds such as aminoguanidine hydrochloride and guanidine hydrochloride also show a similar effect, but to different extents. A point mutation, R120G, in alphaB-crystallin that is associated with desmin-related myopathy, results in a significant loss of chaperone-like activity. Arginine restores the activity of mutant protein to a considerable extent. We have investigated the effect of arginine on the structural changes of alpha-crystallin by circular dichroism, fluorescence, and glycerol gradient sedimentation. Far-UV CD spectra show no significant changes in secondary structure, whereas near-UV CD spectra show subtle changes in the presence of arginine. Glycerol gradient sedimentation shows a significant decrease in the size of alpha-crystallin oligomer in the presence of arginine. Increased exposure of hydrophobic surfaces of alpha-crystallin, as monitored by pyrene-solubilization and ANS-fluorescence, is observed in the presence of arginine. These results show that arginine brings about subtle changes in the tertiary structure and significant changes in the quaternary structure of alpha-crystallin and enhances its chaperone-like activity significantly. This study should prove useful in designing strategies to improve chaperone function for therapeutic applications.  相似文献   

20.
Stem bromelain (SBM) is a therapeutic protein that has been studied for alkaline denaturation in the intestines, the principal site of its absorption. In this study, we investigated fluorinated alcohol 2,2,2-trifluoroethanol (TFE)-induced conformational changes in the specific/pre-molten globule (SMG) state of SBM observed at pH 10 by spectroscopic methods. Far-UV circular dichroism (CD) spectra showed that the protein retained its native-like secondary structure at TFE concentrations of up to 30% with a pronounced minimum at 222 nm, characteristic of a helix. However, addition of slightly higher TFE concentrations (≥40%) resulted in an ∼2.5-fold induction of this helical feature and a time-dependent increase in non-amyloidic turbidity as evidenced by turbidometric, Congo red-binding, and Thioflavin T (ThT)-binding studies. Near-UV CD spectra suggested a gradual but significant loss of tertiary structure at 10-30% TFE. Tryptophan studies showed blue-shifted fluorescence, although the number of accessible tryptophans remained the same up to 30% TFE. The SMG showed enhanced binding of the fluorescent probe 1-anilino-8-naphthalene sulfonic acid (ANS) up to 30% TFE, beyond which binding plateaued. Thermal and guanidine hydrochloride (GdnHCl) transition studies in the near-UV range indicated a single cooperative transition for the SMG state in the presence of 30% TFE, similar to that observed for native SBM at pH 7.0 (although with different Tms), unlike the SMG state. TFE (30%) appeared to induce native-like stability to the original SMG. These observations suggest a transformation of the SMG to a characteristic molten globule (MG) conformation at 30% TFE, possibly due to TFE-induced rearrangement of hydrophobic interactions at the protein's isoelectric point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号