首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of Pb(2+) on vesicular catecholamine release in intact and ionomycin-permeabilized PC12 cells were investigated using carbon fibre microelectrode amperometry. Changes in intracellular Pb(2+) and Ca(2+) were measured from indo-1 fluorescence by confocal laser scanning microscopy. Depolarization of intact cells and superfusion of permeabilized cells with saline containing > or = 100 microm Ca(2+) rapidly evokes quantal catecholamine release. Superfusion with up to 10 microm Pb(2+) -containing saline evokes release of similar catecholamine quanta after a concentration-dependent delay. Thresholds to induce exocytosis within 30 min of exposure are between 1 and 10 microm Pb(2+) in intact cells and between 10 and 30 nm Pb(2+) in permeabilized cells. Additional inhibition of exocytosis occurs in permeabilized cells exposed to 10 microm Pb(2+). Using membrane-impermeable and -permeable chelators it is demonstrated that intracellular Ca(2+) is not required for Pb(2+) -induced exocytosis. In indo- 1-loaded cells Pb(2+) reduces the fluorescence intensity after a concentration-dependent delay, whereas the fluorescence ratio, indicating intracellular Ca(2+) concentration, remains unchanged. The delay to detect an increase in free intracellular Pb(2+) (> or = 30 nm) is much longer than the delay to Pb(2+) -induced exocytosis, indicating that cytoplasmic components buffer Pb(2+) with high affinity. It is concluded that Pb(2+) acts as a high-affinity substitute for Ca(2+) to trigger essential steps leading to vesicular catecholamine release, which occurs when only approximately 20% of the intracellular high-affinity binding capacity ( approximately 2 attomol/cell) is saturated with Pb(2+).  相似文献   

2.
Contributions of L-, N-, and P/Q-type voltage-operated Ca2+ channels to two responses of bovine adrenal chromaffin cells have been studied using the nonreceptor stimulus K+ depolarization. Tyrosine hydroxylase activity and catecholamine secretion were both increased by K+ over a similar concentration range and in a Ca(2+)-dependent manner. At a submaximal concentration of 20 mM K+, tyrosine hydroxylase activation was reduced by nitrendipine but unaffected individually by (+/-)-Bay K 8644, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. It was fully blocked by combined inhibition of L-, N-, and P/Q-type channels. With a maximal concentration of 50 mM K+, tyrosine hydroxylase activation was unaffected by nitrendipine as well as by each of the other drugs on its own; however, it was reduced by 71 % by combined inhibition of L-, N-, and P/Q-type channels. In contrast, catecholamine secretion with both 20 and 50 mM K+ was enhanced by (+/-)-Bay K 8644, partially inhibited by nitrendipine and omega-conotoxin MVIIC, and completely blocked by a combination of antagonists for L-, N-, and P/Q-type channels. The results show that Ca2+ entry through voltage-operated Ca2+ channels can differentially regulate distinct chromaffin cell responses and that this is an intrinsic property of the mechanisms by which Ca2+ entry activates these responses. It is not dependent on the parallel activation of other signaling events by receptors.  相似文献   

3.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

4.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

5.
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells.  相似文献   

6.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

7.
Mitochondria play a central role in cell homeostasis. Amongst others, one of the important functions of mitochondria is to integrate its metabolic response with one of the major signaling pathways - the Ca2+ signaling. Mitochondria are capable to sense the levels of cytosolic Ca2+ and generate mitochondrial Ca2+ responses. Specific mechanisms for both Ca2+ uptake and Ca2+ release exist in the mitochondrial membranes. In turn, the mitochondrial Ca2+ signals are able to produce changes in the mitochondrial function and metabolism, which provide the required level of functional integration. This essay reviews briefly the current available information regarding the mitochondrial Ca2+ transport systems and some of the functional consequences of mitochondrial Ca2+ uptake  相似文献   

8.
Microamperometry was used to monitor quantal catecholamine release from individual PC12 cells in response to raised extracellular K+ and caffeine. K+-evoked exocytosis was entirely dependent on Ca2+ influx through voltage-gated Ca2+ channels, and of the subtypes of such channels present in these cells, influx through N-type was primarily responsible for triggering exocytosis. L-type channels played a minor role in mediating K+-evoked secretion, whereas P/Q-type channels did not appear to be involved in secretion at all. Caffeine also evoked catecholamine release from PC12 cells, but only in the presence of extracellular Ca2+. Application of caffeine in Ca2+-free solutions evoked large, transient rises of [Ca2+]i, but did not trigger exocytosis. When Ca2+ was restored to the extracellular solution (in the absence of caffeine), store-operated Ca2+ influx was observed, which evoked exocytosis. The amount of secretion evoked by this influx pathway was far greater than release triggered by influx through L-type Ca2+ channels, but less than that caused by Ca2+ influx through N-type channels. Our results indicate that exocytosis may be regulated even in excitable cells by Ca2+ influx through pathways other than voltage-gated Ca2+ channels.  相似文献   

9.
Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin.  相似文献   

10.
We investigated the effects of 17beta-estradiol, an estrogen, on [(3)H]norepinephrine ([(3)H]NE) secretion in PC12 cells. Pretreatment with 17beta-estradiol reduced 70 mM K(+)-induced [(3)H]NE secretion in a concentration-dependent manner with a half-maximal inhibitory concentration (IC(50)) of 2 +/- 1 microM. The 70 mM K(+)-induced cytosolic free Ca(2+) concentration ([Ca(2+)](i)) rise was also reduced when the cells were treated with 17beta-estradiol (IC(50) = 15 +/- 2 microM). Studies with voltage-sensitive calcium channel (VSCC) antagonists such as nifedipine and omega-conotoxin GVIA revealed that both L- and N-type VSCCs were affected by 17beta-estradiol treatment. The 17beta-estradiol effect was not changed by pretreatment of the cells with actinomycin D and cycloheximide for 5 h. In addition, treatment with pertussis or cholera toxin did not affect the inhibitory effect of 17beta-estradiol. 17beta-Estradiol also inhibited the ATP-induced [(3)H]NE secretion and [Ca(2+)](i) rise. In PC12 cells, the ATP-induced [Ca(2+)](i) rise is known to occur through P2X(2) receptors, the P2Y(2)-mediated phospholipase C (PLC) pathway, and VSCCs. 17beta-Estradiol pretreatment during complete inhibition of the PLC pathway and VSCCs inhibited the ATP-induced [Ca(2+)](i) rise. Our results suggest that 17beta-estradiol inhibits catecholamine secretion by inhibiting L- and N-type Ca(2+) channels and P2X(2) receptors in a nongenomic manner.  相似文献   

11.
PACAP is a critical regulator of long-term catecholamine secretion from the adrenal medulla in vivo, however the receptor or pathways for Ca2+ entry triggering acute and sustained secretion have not been adequately characterized. We have previously cloned the bovine adrenal chromaffin cell PAC1 receptor that contains the molecular determinants required for PACAP-induced Ca2+ elevation and is responsible for imparting extracellular Ca2+ influx-dependent secretory competence in PC12 cells. Here, we use this cell model to gain mechanistic insights into PAC1hop-dependent Ca2+ pathways responsible for catecholamine secretion. PACAP-modulated extracellular Ca2+ entry in PC12 cells could be partially blocked with nimodipine, an inhibitor of L-type VGCCs and partially blocked by 2-APB, an inhibitor and modulator of various transient receptor potential (TRP) channels. Despite the co-existence of these two modes of Ca2+ entry, sustained catecholamine secretion in PC12 cells was exclusively modulated by 2-APB-sensitive Ca2+ channels. While IP3 generation occurred after PACAP exposure, most PACAP-induced Ca2+ mobilization involved release from ryanodine-gated cytosolic stores. 2-APB-sensitive Ca2+ influx, and subsequent catecholamine secretion was however not functionally related to intracellular Ca2+ mobilization and store depletion. The reconstituted PAC1hop-expessing PC12 cell model therefore recapitulates both PACAP-induced Ca2+ release from ER stores and extracellular Ca2+ entry that restores PACAP-induced secretory competence in neuroendocrine cells. We demonstrate here that although bPAC1hop receptor occupancy induces Ca2+ entry through two independent sources, VGCCs and 2-APB-sensitive channels, only the latter contributes importantly to sustained vesicular catecholamine release that is a fundamental characteristic of this neuropeptide system. These results emphasize the importance of establishing functional linkages between Ca2+ signaling pathways initiated by pleotrophic signaling molecules such as PACAP, and physiologically important downstream events, such as secretion, triggered by them.  相似文献   

12.
In this study, we showed that cross-linking CD3 molecules on the T cell surface resulted in Ca2+ release from the intracellular stores followed by a sustained Ca2+ influx. Inhibition of release with TMB-8 did not block the influx. However, inhibition of phospholipase C activity suppressed both Ca2+ release and influx. Once activated, the influx pathway remained open in the absence of further hydrolysis of PIP2. Thapsigargin, a microsomal Ca2+ -ATPase inhibitor, stimulated Ca2+ entry into the cells by a mechanism other than emptying Ca2+ stores. In addition, Ca2+ entry into the Ca2+ -depleted cells was stimulated by low basal level of cytosolic Ca2+, not by the emptying of intracellular Ca2+ stores. Both the Ca2+ release and influx were dependent on high and low concentrations of extracellular Ca2+. At low concentrations, Mn2+ entered the cell through the Ca2+ influx pathway and quenched the sustained phase of fluorescence; whereas, at higher Mn2+ concentration both the transient and the sustained phases of fluorescence were quenched. Moreover, Ca2+ release was inhibited by low concentrations of Ni2+, La3+, and EGTA, while Ca2+ influx was inhibited by high concentrations. Thus, in T cells Ca2+ influx occurs independently of IP3-dependent Ca2+ release. However, some other PIP2 hydrolysis-dependent event was involved in prolonged activation of Ca2+ influx. Extracellular Ca2+ influenced Ca2+ release and influx through the action of two plasma membrane Ca2+ entry pathways with different pharmacological and biochemical properties.  相似文献   

13.
We have investigated the mechanisms by which activation of cannabinoid receptors reduces glutamate release from cerebrocortical nerve terminals. Glutamate release evoked by depolarization of nerve terminals with high KCl (30 mmol/L) involves N and P/Q type Ca(2+)channel activation. However, this release of glutamate is independent of Na(+) or K(+) channel activation as it was unaffected by blockers of these channels (tetrodotoxin -TTX- or tetraethylammonium TEA). Under these conditions in which only Ca(2+) channels contribute to pre-synaptic activity, the activation of cannabinoid receptors with WIN55,212-2 moderately reduced glutamate release (26.4 +/- 1.2%) by a mechanism that in this in vitro model is resistant to TTX and consistent with the inhibition of Ca(2+) channels. However, when nerve terminals are stimulated with low KCl concentrations (5-10 mmol/L) glutamate release is affected by both Ca(2+) antagonists and also by TTX and TEA, indicating the participation of Na(+) and K(+) channel firing in addition to Ca(2+) channel activation. Interestingly, stimulation of nerve terminals with low KCl concentrations uncovered a mechanism that further inhibited glutamate release (81.78 +/- 4.9%) and that was fully reversed by TEA. This additional mechanism is TTX-sensitive and consistent with the activation of K(+) channels. Furthermore, Ca(2+) imaging of single boutons demonstrated that the two pre-synaptic mechanisms by which cannabinoid receptors reduce glutamate release operate in distinct populations of nerve terminals.  相似文献   

14.
The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca2+ signalling by either amplifying Ca2+ entry through voltage-gated Ca2+ channels by Ca2+-induced Ca2+ release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol-1,4,5-trisphosphate-induced Ca2+ release (IICR). The ER Ca2+ store emerges as a single interconnected pool, thus allowing for a long-range Ca2+ signalling via intra-ER tunnels. The fluctuations of intra-ER free Ca2+ concentration regulate the activity of numerous ER resident proteins responsible for post-translational protein folding and modification. Disruption of ER Ca2+ homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca2+ handling may be involved in pathogenesis of various, neurodegenerative diseases including brain ischemia and Alzheimer dementia.  相似文献   

15.
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels that can modulate various neuronal processes by altering intracellular Ca(2+) levels. Following nAChR stimulation Ca(2+) can enter cells either directly, through the intrinsic ion channel, or indirectly following voltage-operated Ca(2+) channel (VOCC) activation; Ca(2+) levels can subsequently be amplified via Ca(2+)-induced Ca(2+) release from intracellular stores. We have used subtype-selective nAChR agonists to investigate the Ca(2+) sources contributing to alpha7 and non-alpha7 nAChR-mediated increases in intracellular Ca(2+) in PC12 cells. Application of the alpha7 nAChR positive allosteric modulator PNU 120596 (10 mum), in conjunction with the alpha7 nAChR agonist, compound A [(R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl)thiophene-2-carboxamide), 10 nm], produces a rapid increase in fluo-3 fluorescence that is prevented by the selective alpha7 nAChR antagonist alpha-bungarotoxin. The non-alpha7 nAChR agonist 5-Iodo-A-85380 produces alpha-bungarotoxin-insensitive increases in intracellular Ca(2+) (EC(50) = 11.2 mum). Using these selective agonists or KCl in conjunction with general and selective VOCC inhibitors, we demonstrate that the primary route of Ca(2+) entry following either non-alpha7 nAChR activation or KCl stimulation is via L-type VOCCs. In contrast, the alpha7 nAChR-mediated response is unaffected by VOCC blockers but is inhibited by modulators of intracellular Ca(2+) stores. These results indicate that alpha7 and non-alpha7 nAChRs are differentially coupled to Ca(2+)-induced Ca(2+) release and VOCCs, respectively.  相似文献   

16.
The adjustment of Ca2+ entry in cardiac cells is critical to the generation of the force necessary for the myocardium to meet the physiological needs of the body. In this review, we present the concept that Ca2+ can promote its own entry through Ca2+ channels by different mechanisms. We refer to it under the general term of ‘Ca2+-induced Ca2+ entry’ (CICE). We review short-term mechanisms (usually termed facilitation) that involve a stimulating effect of Ca2+ on the L-type Ca2+ current (ICa-L) amplitude (positive staircase) or a lessening of Ca2+-dependent inactivation of ICa-L. This latter effect is related to the amount of Ca2+ released by ryanodine receptors (RyR2) of the sarcoplasmic reticulum (SR). Both effects are involved in the control of action potential (AP) duration. We also describe a long-term mechanism based on Ca2+-dependent down-regulation of the Kv4.2 gene controlling functional expression of the repolarizing transient outward K+ current (Ito) and, thereby, AP duration. This mechanism, which might occur very early during the onset of hypertrophy, enhances Ca2+ entry by maintaining Ca2+ channel activation during prolonged AP. Both Ca2+-dependent facilitation and Ca2+-dependent down-regulation of Ito expression favour AP prolongation and, thereby, promote sustained voltage-gated Ca2+ entry used to enhance excitation–contraction (EC) coupling (with no change in the density of Ca2+ channels per se). These self-maintaining mechanisms of Ca2+ entry have significant functions in remodelling Ca2+ signalling during the cardiac AP. They might support a prominent role of Ca2+ channels in the establishment and progression of abnormal Ca2+ signalling during cardiac hypertrophy and congestive heart failure.  相似文献   

17.
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.  相似文献   

18.
Near the base of mammalian seminiferous epithelium, Sertoli cells are joined by tight junctions, which constitute the blood-testis barrier. Differentiating germ cells are completely enveloped by Sertoli cells and must traverse the tight junctions during spermatogenic cycle. Following the specific ligand activation of L-selectin, the up-regulated Rho family small G-proteins have been implicated as important modulators of tight junctional dynamics. Although the activation of L-selectin transmits subsequent intracellular signals in a Ca(+2)-dependent fashion in various cell types, little is understood regarding the signaling pathways utilized by L-selectin in Sertoli cells. Therefore, we have examined the possible resultant calcium influx triggered by specific ligand-activation of cell surface L-selectin receptors or by cross-linking of L-selectin with anti-L-selectin. Spectrofluorimetric studies demonstrate increase of intracellular Ca(+2) levels immediately after the treatment of the L-selectin ligands, fucoidan and sialyl Lewis-a, or after treatment with anti-L-selectin antibody. We then determined the mechanism of Ca(+2) influx by investigating L- and T-type voltage-operated Ca(+2) channels, which have been suggested to present in the membranes of Sertoli cells. Data demonstrate that Sertoli cells treated with L-type voltage-operated Ca(+2) channel antagonists, nifedipine, diltiazem, or verapamil, lead to dose-dependent blockage of L-selectin-induced Ca(+2) influx. Cells treated with mibedradil, a T-type voltage-operated Ca(+2) channel antagonist, results in little or no blocking effect. Therefore, we conclude that activation of Sertoli cell L-selectin induces Ca(+2) influx, which is at least partially regulated by L-type voltage-operated Ca(+2) channels.  相似文献   

19.
We investigated the initiation of Ca2+waves underlying triggered propagated contractions (TPCs) occurring in rat cardiac trabeculae under conditions that simulate the functional non-uniformity caused by mechanical or ischemic local damage of the myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small constant flow jet of solution with a composition that reduces excitation–contraction coupling in myocytes within that segment. Force was measured and sarcomere length as well as [Ca2+]i were measured regionally. When the jet-contained Caffeine, BDM or Low-[Ca2+], muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening of the normal regions outside the jet. During relaxation the sarcomeres in the exposed segment shortened rapidly. Short trains of stimulation at 2.5 Hz reproducibly caused Ca2+-waves to rise from the borders exposed to the jet. Ca2+-waves started during force relaxation of the last stimulated twitch and propagated into segments both inside and outside of the jet. Arrhythmias, in the form of non-driven rhythmic activity, were triggered when the amplitude of the Ca2+-wave increased by raising [Ca2+]o. The arrhythmias disappeared when the muscle uniformity was restored by turning the jet off. We have used the four state model of the cardiac cross bridge (Xb) with feedback of force development to Ca2+ binding by Troponin-C (TnC) and observed that the force–Ca2+ relationship as well as the force–sarcomere length relationship and the time course of the force and Ca2+ transients in cardiac muscle can be reproduced faithfully by a single effect of force on deformation of the TnC·Ca complex and thereby on the dissociation rate of Ca2+. Importantly, this feedback predicts that rapid decline of force in the activated sarcomere causes release of Ca2+ from TnC.Ca2+,which is sufficient to initiate arrhythmogenic Ca2+ release from the sarcoplasmic reticulum. These results show that non-uniform contraction can cause Ca2+-waves underlying TPCs, and suggest that Ca2+ dissociated from myofilaments plays an important role in the initiation of arrhythmogenic Ca2+-waves.  相似文献   

20.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号