首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.  相似文献   

2.
3.
Acid-soluble spore proteins of Bacillus subtilis   总被引:3,自引:12,他引:3       下载免费PDF全文
Acid-soluble spore proteins (ASSPs) comprise about 5% of the total protein of mature spores of different Bacillus subtilis strains. They consist of three abundant species, alpha, beta, and gamma, four less abundant species, and several minor species, alpha, beta, and gamma make up about 18, 18 and 36%, respectively, of the total ASSPs of strain 168, have molecular weights of 5,900, 5,9000, and 11,000, respectively, and resemble the major (A, C, and B) components of Bacillus megaterium ASSPs in several respects, including sensitivity to a specific B. megaterium spore endopeptidase. However, they have pI's of 6.58, 6.67, and 7.96, all lower than those of any of the B. megaterium ASSPs. Although strains varied in the proportions of different ASSPs, to overall patterns seen on gel electrophoresis are constant. ASSPs are located interior to the cortex, presumably in the spore cytoplasm, and are synthesized during sporulation and degraded during germination.  相似文献   

4.
Germination of Bacillus megaterium QM B1551 spores can be triggered by L-proline chloromethyl ketone at ~ 10 fold lower concentrations than L-proline. [3H] L-proline chloromethyl ketone bound to several protein fractions, one of which was decreased in a mutant (JV137) that cannot be triggered by L-proline. Treatment of spores with [3H] acetic anhydride specifically inhibited L-proline triggered germination, and also covalently modified the same protein fraction which appears to be bound to the spore membrane. These results indicate that it is possible to identify a protein fraction in spores that may play a key role in triggering spore germination.  相似文献   

5.
Summary We have analyzed the RNA synthesized during spore germination in Bacillus subtilis. Early in germination there is little incorporation of [3H]uridine into RNA. A large increase in incorporation into RNA was found at 45–60 min into germination which was in part due to increases in the specific activity of the UTP pool. When corrected for specific activity changes, the instantaneous rate of RNA synthesis showed a seven to tenfold increase between 30 and 45 min of germination. Polyacrylamide gel electrophoresis studies showed that the RNA synthesized during germination appeared very similar to the RNA made during vegetative growth. DNA-RNA hybridization studies indicated that mRNA and rRNA were synthesized throughout germination. Their relative proportions remained constant and were very similar to the composition of RNA synthesized during vegetative growth.In partial fulfillment of the requirements for the doctoral degree by A.S. in the Department of Microbiology at the New York University School of Medicine  相似文献   

6.
Spores produced by a mutant of Bacillus subtilis were slow to develop their resistance properties during sporulation, and were slower to germinate than were wild-type spores. The coat protein composition of the mutant spores, as analysed by SDS-PAGE, was similar to that of the wild-type spores. However, one of the proteins (mol. wt 12000) which is normally present in the outer-most layers of mature wild-type spores and which is surface-exposed, was assembled abnormally into the coat of the mutant spores and not surface-exposed. The mutation responsible for this phenotype (spo-520) has been mapped between pheA and leuB on the B. subtilis chromosome, and was 47% cotransformable with leuB16. This mutation, and three others closely linked to it, define a new sporulation locus, spoVIB, which is involved in spore coat assembly. The phenotype of the mutant(s) supports the contention that spore germination and resistance properties may be determined by the assembly of the coat.  相似文献   

7.
Abstract To clarify the molecular mechanisms that trigger spore germination of Bacillus subtilis , the location of GerA proteins (GerAA, GerAB and GerAC), which were reported to be putative gene products of a receptor for one of the germinants, l-alanine, was investigated by immunological techniques using anti-GerA peptide antibodies. Four antibodies were raised against the corresponding epitopes, two in GerAA, one in GerAB and the other in GerAC molecules. The binding of all four antibodies to the inner surface of the cortex-less spore coat fragments could be seen by scanning immunoelectron microscopy with colloidal gold particles. The result agreed with the fact, previously reported, that the colloidal gold particles were visualized just inside the spore coat layer by transmission immunoelectron microscopy using another anti-GerAB peptide antibody.  相似文献   

8.
Germination at 37 degrees C of spores of Bacillus subtilis 1604 in the L-alanine and potassium phosphate (ALA) and the glucose, fructose, L-asparagine, potassium chloride (GFAK) germinant systems was triggered following heat activation at 70 degrees C for 1 h. In these conditions, 50% of the spore population became committed to germinate after exposure for 10 min and 14 min to ALA and GFAK, respectively, at which time 38% and 30% losses of OD600 had taken place. Dipicolinic acid (DPA) release, loss of heat resistance and release of soluble hexosamine-containing fragments occurred after commitment and were closely associated with loss of refractility in both the ALA and GFAK pathways. Net ATP synthesis could not be detected until 3-4 min after initiation of germination in both ALA and GFAK, by which time greater than 20% of the spore population was committed to germinate. The ALA and GFAK germination pathways were greater than 99% inhibited by 3 and 1 mM-HgCl2, respectively, as measured by OD600 loss. Reversible post-commitment HgCl2-sensitive sites were present in the ALA and GFAK pathways which were 50% inhibited by 0.125 mM and 0.05 mM-HgCl2, respectively. A pre-commitment HgCl2-sensitive site was identified in the ALA pathway which was 55% inhibited by 6 mM-HgCl2. At 3 mM-HgCl2, 70% of the spore population became committed to germinate in the ALA pathway, whereas less than 5% OD600 loss occurred. In this system, loss of heat resistance was associated with commitment, whereas OD600 loss and DPA release were identified as post-commitment events. The ALA and GFAK pathways were insensitive to a variety of metabolic inhibitors. Protease inhibitors had different effects on the ALA and GFAK pathways: phenylmethanesulphonyl fluoride (PMSF) solely inhibited ALA germination at a pre-commitment site and had little effect on GFAK germination, whereas N alpha-p-tosyl-L-arginine methyl ester (TAME) inhibited both the ALA and GFAK pathways at pre- and post-commitment sites. These results are discussed in relation to a recently proposed model for the triggering of Bacillus megaterium KM spore germination.  相似文献   

9.
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.  相似文献   

10.
11.
Synthesis of acid-soluble spore proteins by Bacillus subtilis.   总被引:1,自引:1,他引:1       下载免费PDF全文
The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.  相似文献   

12.
13.
14.
Role of DNA repair in Bacillus subtilis spore resistance.   总被引:10,自引:0,他引:10       下载免费PDF全文
Wet-heat or hydrogen peroxide treatment of wild-type Bacillus subtilis spores did not result in induction of lacZ fusions to three DNA repair-related genes (dinR, recA, and uvrC) during spore outgrowth. However, these genes were induced during outgrowth of wild-type spores treated with dry heat or UV. Wet-heat, desiccation, dry-heat, or UV treatment of spores lacking major DNA-binding proteins (termed alpha-beta- spores) also resulted in induction of the three DNA repair genes during spore outgrowth. Hydrogen peroxide treatment of alpha-beta-spores did not result in induction of dinR- and rerA-lacZ but did cause induction of uvrC-lacZ during spore outgrowth. Spores of a recA mutant were approximately twofold more UV sensitive and approximately ninefold more sensitive to dry heat than were wild-type spores but were no more sensitive to wet heat and hydrogen peroxide. In contrast, alpha-beta- recA spores were significantly more sensitive than were alpha-beta- spores to all four treatments, as well as to desiccation. Surprisingly, RecA levels were quite low in dormant spores, but RecA was synthesized during spore outgrowth. Taken together, these data (i) are consistent with previous suggestions that some treatments (dry heat and UV with wild-type spores; desiccation, dry and wet heat, hydrogen peroxide, and UV with alpha-beta- spores) that kill spores do so in large part by causing DNA damage and (ii) indicate that repair of DNA damage during spore outgrowth is an important component of spore resistance to a number of treatments, as has been shown previously for UV.  相似文献   

15.
When challenged by stresses such as starvation, the soil bacterium Bacillus subtilis produces an endospore surrounded by a proteinaceous coat composed of >70 proteins that are organized into three main layers: an amorphous undercoat, lightly staining lamellar inner coat and electron-dense outer coat. This coat protects the spore against a variety of chemicals or lysozyme. Mutual interactions of the coat's building blocks are responsible for the formation of this structurally complex and extraordinarily resistant shell. However, the assembly process of spore coat proteins is still poorly understood. In the present work, the main focus is on the three spore coat morphogenetic proteins: SpoIVA, SpoVID and SafA. Direct interaction between SpoIVA and SpoVID proteins was observed using a yeast two-hybrid assay and verified by coexpression experiment followed by Western blot analysis. Coexpression experiments also confirmed previous findings that SpoVID and SafA directly interact, and revealed a novel interaction between SpoIVA and SafA. Moreover, gel filtration analysis revealed that both SpoIVA and SpoVID proteins form large oligomers.  相似文献   

16.
Antibodies were raised against purified germination-specific cortex-lytic enzyme (GSLE) from spores of Bacillus megaterium KM which neutralized the ability of GSLE to germinate permeabilized spores. Western blotting of dormant spore and vegetative cell fractions separated by SDS-PAGE demonstrated that GSLE is spore-specific and that greater than 90% of the GSLE is associated with the dormant spore cortex peptidoglycan as a phosphorylated 63kD pro-form, which could only be visualized after lysozyme digestion of the peptidoglycan. During germination, the 63kD pro-form of GSLE is processed to release the active enzyme, which had an apparent molecular weight of 30kD. Inhibitor studies demonstrated that GSLE activation occurs as part of the commitment reaction and thus represents the first-identified enzymatic event to occur during germination triggering. Proteins that cross-react with anti-GSLE sera are present in spore fractions of other species.  相似文献   

17.
18.
19.
Y Sakae  Y Yasuda    K Tochikubo 《Journal of bacteriology》1995,177(21):6294-6296
Ultrastructural localization of GerAB, one of the proteins of Bacillus subtilis spores related to L-alanine-initiated germination, was investigated by immunoelectron microscopy with antipeptide (residues 61 to 80 of GerAB) antiserum and a colloidal gold-immunoglobulin G complex. Immunogold particles were visualized in the boundary region between the cortex and coat of dormant spores, and they were broadly dispersed into the cortex region after germination.  相似文献   

20.
Spores of a Bacillus subtilis strain with a gerD deletion mutation (Delta gerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did Delta gerD spores in which nutrient receptors were overexpressed. The germination defect of Delta gerD spores was not suppressed by many changes in the sporulation or germination conditions. Germination of Delta gerD spores was also slower than that of wild-type spores with a pressure of 150 MPa, which triggers spore germination through nutrient receptors. Ectopic expression of gerD suppressed the slow germination of Delta gerD spores with nutrients, but overexpression of GerD did not increase rates of spore germination. Loss of GerD had no effect on spore germination induced by agents that do not act through nutrient receptors, including a 1:1 chelate of Ca2+ and dipicolinic acid, dodecylamine, lysozyme in hypertonic medium, a pressure of 500 MPa, and spontaneous germination of spores that lack all nutrient receptors. Deletion of GerD's putative signal peptide or change of its likely diacylglycerylated cysteine residue to alanine reduced GerD function. The latter findings suggest that GerD is located in a spore membrane, most likely the inner membrane, where the nutrient receptors are located. All these data suggest that, while GerD is not essential for nutrient germination, this protein has an important role in spores' rapid response to nutrient germinants, by either direct interaction with nutrient receptors or some signal transduction essential for germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号