首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Synaptic ribbons are specialized organelles that hold vesicles close to the active zone of sensory synapses, but their function is mysterious. Acute disruption of the ribbon complex using light has now revealed that it has a role in priming synaptic vesicles for fusion.  相似文献   

2.
Limitations in protein homology modeling often arise from the inability to adequately model loops. In this paper we focus on the selection of loop conformations. We present a complete computational treatment that allows the screening of loop conformations to identify those that best fit a molecular model. The stability of a loop in a protein is evaluated via computations of conformational free energies in solution, i.e., the free energy difference between the reference structure and the modeled one. A thermodynamic cycle is used for calculation of the conformational free energy, in which the total free energy of the reference state (i.e., gas phase) is the CHARMm potential energy. The electrostatic contribution of the solvation free energy is obtained from solving the finite-difference Poisson-Boltzmann equation. The nonpolar contribution is based on a surface area-based expression. We applied this computational scheme to a simple but well-characterized system, the antibody hypervariable loop (complementarity-determining region, CDR). Instead of creating loop conformations, we generated a database of loops extracted from high-resolution crystal structures of proteins, which display geometrical similarities with antibody CDRs. We inserted loops from our database into a framework of an antibody; then we calculated the conformational free energies of each loop. Results show that we successfully identified loops with a "reference-like" CDR geometry, with the lowest conformational free energy in gas phase only. Surprisingly, the solvation energy term plays a confusing role, sometimes discriminating "reference-like" CDR geometry and many times allowing "non-reference-like" conformations to have the lowest conformational free energies (for short loops). Most "reference-like" loop conformations are separated from others by a gap in the gas phase conformational free energy scale. Naturally, loops from antibody molecules are found to be the best models for long CDRs (> or = 6 residues), mainly because of a better packing of backbone atoms into the framework of the antibody model.  相似文献   

3.
4.
5.
The TBC (Tre-2/Bub2/Cdc16) domain was originally identified as a conserved domain among the tre-2 oncogene product and the yeast cell cycle regulators Bub2 and Cdc16, and it is now widely recognized as a conserved protein motif that consists of approx. 200 amino acids in all eukaryotes. Since the TBC domain of yeast Gyps [GAP (GTPase-activating protein) for Ypt proteins] has been shown to function as a GAP domain for small GTPase Ypt/Rab, TBC domain-containing proteins (TBC proteins) in other species are also expected to function as a certain Rab-GAP. More than 40 different TBC proteins are present in humans and mice, and recent accumulating evidence has indicated that certain mammalian TBC proteins actually function as a specific Rab-GAP. Some mammalian TBC proteins {e.g. TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1] and TBC1D4/AS160 (Akt substrate of 160 kDa)} play an important role in homoeostasis in mammals, and defects in them are directly associated with mouse and human diseases (e.g. leanness in mice and insulin resistance in humans). The present study reviews the structure and function of mammalian TBC proteins, especially in relation to Rab small GTPases.  相似文献   

6.
Priming the nucleosome: a role for HMGB proteins?   总被引:6,自引:0,他引:6       下载免费PDF全文
Travers AA 《EMBO reports》2003,4(2):131-136
  相似文献   

7.
In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.  相似文献   

8.
Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism.  相似文献   

9.
Graumann PL 《Biochimie》2001,83(1):53-59
SMC proteins are a ubiquitous protein family, present in almost all organisms so far analysed except for a few bacteria. They function in chromosome condensation, segregation, cohesion, and DNA recombination repair in eukaryotes, and can introduce positive writhe into DNA in vitro. SMC proteins and the structurally homologous MukB protein are unusual ATPases that form antiparallel dimers, with long coiled coil segments separating globular ends capable of binding DNA. Recently, SMC proteins have been shown to be essential for chromosome condensation, segregation and cell cycle progression in bacteria. Identification of a suppressor mutation for MukB in topoisomerase I in Escherichia coli suggests that SMC proteins are involved in negative DNA supercoiling in vivo, and by this means organize and compact chromosomes. A model is discussed in which bacterial SMC proteins act after an initial separation of replicated chromosome origins into the future daughter cell, separating sister chromatids by condensing replicated DNA strands within both cell halves. This would be analogous to a pulling of DNA strands into opposite cell halves by a condensation mechanism exerted at two specialised subregions in the cell.  相似文献   

10.
A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes.  相似文献   

11.
Gram-negative bacteria need to be able to transport a large variety of macromolecules across their outer membranes. In Escherichia coli, the passage of the group 1 capsular polysaccharide is mediated by an integral outer membrane protein, Wza. The crystal structure of Wza, determined recently, reveals a novel transmembrane alpha-helical barrel and a large central cavity within the core of the vase-shaped protein complex. The structure has similarities with that of the secretin protein, PilQ, which mediates the transition of type IV pili across the outer membrane. We propose that the large internal chamber, which can accommodate the secreted assembled macromolecule, is likely to be a common feature found in other outer membrane proteins involved in secretion processes.  相似文献   

12.
A Hille  P Rosa  W B Huttner 《FEBS letters》1984,177(1):129-134
Protein sulfation was studied in germ-free rats by prolonged in vivo labeling with [35S]sulfate. Specific sets of sulfated proteins were observed in all tissues examined, in leucocytes, and in blood plasma. No protein sulfation was detected in erythrocytes. Analysis of the type of sulfate linkage showed that sulfated proteins secreted into the plasma contained predominantly tyrosine sulfate, whereas sulfated proteins found in tissues contained largely carbohydrate sulfate. This implies some kind of selection concerning the intracellular processing, secretion, turnover or re-uptake of sulfated proteins which is responsible for the enrichment of tyrosine-sulfated proteins in the plasma.  相似文献   

13.
In bacteria, Ca(2+) is implicated in a wide variety of cellular processes, including the cell cycle and cell division. Dedicated influx and efflux systems tightly control the low cytoplasmic Ca(2+) levels in prokaryotes. Additionally, the growing number of proteins containing various Ca(2+)-binding motifs supports the importance of Ca(2+), which controls various protein functions by affecting protein stability, enzymatic activity or signal transduction. The existence of calmodulin-like proteins (containing EF-hand motifs) in bacteria is a long-standing hypothesis. Analysis of the prokaryotic protein sequences available in the databases has revealed the presence of several calmodulin-like proteins containing two or more authentic EF-hand motifs, suggesting that calmodulin-like proteins could be involved in Ca(2+) regulation in bacteria.  相似文献   

14.
Atomic packing in proteins is not optimized, most structures containing internal cavities, which have been identified by molecular modelling and characterized experimentally. Cavities seem to play a role in assisting conformational changes between domains or subunit interfaces. Comparison between homologous proteins from thermophiles and mesophiles indicates that optimizing packing enhances stabilization at the expense of flexibility. For proteins which interact with small ligands or substrates, cavities seem to play a role in controlling binding and catalysis, rather than being mere "packing defects". We believe that a more complete analysis on the localization, conservation and role of cavities in protein structures (by modelling and site-directed mutagenesis), will reveal that rather than being randomly distributed, they are located in key positions to allow structural dynamics and thereby functional control.  相似文献   

15.
The logic of cellular decision-making is largely controlled by regulatory circuits defining molecular switches. Such switching elements allow to turn a graded input signal into an all-or-nothing output. Traditional studies have focused on this bistable picture of regulation, but higher-order scenarios involving tristable and tetrastable states are possible too. Are these multiswitches allowed in simple gene regulatory networks? Are they likely to be observed? If not, why not? In this paper we present the examination of this question by means of a simple but powerful geometric approach. We examine the relation between multistability, the degree of multimerization of the regulators and the role of autoloops within a deterministic setting, finding that N-stable circuits are possible, although their likelihood to occur rapidly decays with the order of the switch. Our work indicates that, despite two-component circuits are able to implement multistability, they are optimal for Boolean switches. The evolutionary implications are outlined.  相似文献   

16.
Stable conformations of β-isomaltose (α-d-glucopyranosyl-(1→6)-β-d-glucose) in gas-phase and aqueous solution are investigated in this study using quantum mechanical calculations. Conformational maps are calculated at HF/6-31G(d,p) level and lower energy structures are sampled in the most stable regions. Entropic and thermal corrections are considered and the Boltzmann population is obtained for conformers that are representative of the 18 most stable regions found on the potential energy surface. B3LYP/6-31+G(d,p) and B3LYP/6-311+G(2d,2p) calculations are used in conformational samplings. Solvation effects are considered through the polarizable continuum model approach. Hydroxymethyl group orientations are investigated for the most stable conformers. The influence of electronic correlation and solvation on the glycosidic linkage preference (TG, GT, and GG) and hydroxymethyl group orientation (tg, gt, and gg) are discussed. Heteronuclear spin coupling constants (3JC,H) along the glycosidic linkage are calculated and comparison with other theoretical results and experiments is used to validate the obtained structures.  相似文献   

17.
RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?   总被引:2,自引:0,他引:2  
RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators.  相似文献   

18.
Goose grazing on arctic tundra vegetation has shown both positive and negative effects on subsequent foraging conditions. To understand the potential of a density-dependent feedback on herbivore population size, the relation between grazing pressure and future foraging conditions is essential. We studied the effect of increasing grazing pressure of barnacle geese (Branta leucopsis) on Spitsbergen. During the establishment of a breeding colony in the period 1992–2004, the proportion of graminoids decreased in the diet of wild geese, while the percentage of mosses increased. Grazing trials with captive geese in an unexploited area showed a similar shift in diet composition. High-quality food plants were depleted within years and over years. Intake rate declined too and as consequence, metabolisable energy intake rate (MEIR) decreased rapidly with increasing grazing pressure. During three successive years of experimental grazing, MEIR decreased at all levels of grazing pressure and declined below minimal energetic requirements when grazing exceeded natural levels of grazing pressure. This suggests that foraging conditions rapidly decline with increasing grazing pressure in these low-productive habitats. The potential for density-dependent feedbacks on local population increase is discussed.  相似文献   

19.
20.
Year 2004 marks the 20th anniversary of the discovery of O-linked N-acetylglucosamine (O-GlcNAc) by Gerald W. Hart. Despite interest for O-GlcNAc, the functions played by this single monosaccharide remain poorly understood, though numerous roles have been suggested, among which is the involvement of O-GlcNAc in the nuclear transport of cytosolic proteins. This idea was first sustained by studies on bovine serum albumin that showed that the protein could be actively carried to the nucleus when it was modified with sugars. In this paper, we will review data on this puzzling problem. We will first describe the well-established nuclear localisation signal (NLS)-dependent nuclear transport by presenting the different factors involved, and then, we will examine where and how O-GlcNAc could be involved in nuclear transport. Whereas it has been suggested that O-GlcNAc could interfere at two levels in the nuclear transport both by modifying proteins to be translocated to the nucleus and by modifying the nucleoporins of the nuclear pore complex, according to us, this second idea seems unlikely. Part of this study will also be dedicated to a relatively new concept in the nuclear transport: the role of the 70-kDa heat shock proteins (HSP70). The action of the chaperone in nuclear translocation was put forward 10 years ago, but new findings suggest that this mechanism could be linked to O-GlcNAc glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号