首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida rugosa lipase-catalyzed esterification of ibuprofen with 1-propanol was conducted in seven ionic liquids and the results were compared with those in isooctane. Although the enzyme showed comparable or higher activity in some ionic liquids compared to that in isooctane, only in the case of [BMIM]PF6 was the enantioselectivity (E = 24.1) almost twice that (E = 13.0) of isooctane. In another six ionic liquids the enzyme enantioselectivity was much poorer (E = 1.1-6.4). At the same conversion of 30%, E of [BMIM]PF6 is more than triple that of isooctane. The lipase stability in [BMIM]PF6 was improved by 25% of that in isooctane. It was concluded that [BMIM]PF6 could be applied to substitute the conventional organic solvent (isooctane) in the esterification of ibuprofen.  相似文献   

2.
研究疏水性离子液体1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)与醋酸-醋酸钠缓冲液两相体系中,固定化产紫青霉Penicillium purpurogenum Li-3细胞转化甘草酸(GL)生成单葡萄糖醛酸基甘草次酸(GAMG)的反应,并与缓冲液单相体系作为对照.确定了在[BMIM]PF6/缓冲液两相体系中,最适离子液体加入比例、缓冲液pH、反应温度、底物浓度分别为10%、5.8、35℃和6.0mmol/L,在此条件下反应58h,甘草酸转化率为87.03%,比缓冲液单相体系提高了15.02%.离子液体循环使用8次后,回收利用率维持在85.28%.主产物GAMG和副产物甘草次酸(GA)在两相体系中得到有效分离,为后续产物分离带来便利.  相似文献   

3.
The enzymatic selective acylations of carbohydrates in ionic liquids were explored in both organic solvents and ionic liquids to see any significant differences in terms of reactivity and regioselectivity between two different classes of reaction media. Monoprotected glycosides (methyl-6-O-trityl-glucosides and galactosides) were chosen as the substrates with Candida rugosa lipase as an acylation enzyme. Two organic solvents, THF and chloroform, and two ionic liquids, [BMIM]+PF6 ([BMIM]+ = 1-butyl-3-methylimidazolium) and [MOEMIM]+PF6 ([MOEMIM]+ = 1-methoxyethyl-3-methylimidazolium), were employed as reaction media. The enzymatic reactions were performed in the presence of vinyl acetate at room temperature. It was observed that the reactions in ionic liquids took place more rapidly and more selectively than those in conventional organic solvents.  相似文献   

4.
Selective lipase-catalyzed synthesis of glucose fatty acid esters in two-phase systems consisting of an ionic liquid (1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF4] or 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIM][PF6]) and t-butanol as organic solvent was investigated. The best enzyme was commercially available lipase B from Candida antarctica (CAL-B), but also lipase from Thermomyces lanuginosa (TLL) gave good conversion. After thorough optimization of several reaction conditions (chain-length and type of acyl donor, temperature, reaction time, percentage of co-solvent) conversions up to 60% could be achieved using fatty acid vinyl ester as acyl donors in [BMIM][PF6] in the presence of 40% t-BuOH with CAL-B at 60 °C.  相似文献   

5.
Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni-and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][PF6]) and bis[(trifluoromethylsulfonyl) imide] ([BMIM] [Tf2N]) were employed as reaction media for the transesterification ofn-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor, The conversion yield was increased around 10% in a water/[BMIM][Tf2N], bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][Tf2N] system. Partion coefficients of the substrates in the water/[BMIM][Tf2N] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.  相似文献   

6.
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)‐configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.  相似文献   

7.
Park JH  Yoo IK  Kwon OY  Ryu K 《Biotechnology letters》2011,33(8):1657-1662
The ionic liquid, 1-butyl-3-methylimidazolium methylsulfate ([BMIM][MeSO4]), was used to investigate the catalytic mechanism of horseradish peroxidase (HRP). The ionic liquid decreased both Km and kcat values for the HRP-catalyzed oxidation of guaiacol (2-methoxyphenol) by H2O2. These studies imply that [BMIM][MeSO4] inhibits the enzyme in an uncompetitive manner. The incorporation of substrate stabilization effects measured by a thermodynamic method into the partial uncompetitive inhibition scheme successfully describes HRP-catalysis in the presence of [BMIM][MeSO4], which participates as the inhibitor. The inhibition constant of the ionic liquid was 0.051 M. The turn-over number of the native HRP was almost 14-times higher than that of the HRP-ionic liquid complex indicating that [BMIM][MeSO4] does not form a dead-end complex with HRP.  相似文献   

8.
The effect of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) on the asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (EOPB) to synthesize optical active ethyl 2-hydroxy-4-phenylbutyrate (EHPB) catalyzed by Saccharomyces cerevisiae was investigated. (R)-EHPB [70.4%, e.e.(R)] is obtained using ethyl ether or benzene as the solvent. The main product is (S)-EHPB [27.7%, e.e.(S)] in [BMIM][PF6]. However, in ionic liquid-water (10:1, v/v) biphasic system, the enantioselectivity of the reduction is shifted towards (R)-side, and e.e.(R) is increased from 6.6 to 82.5% with the addition of ethanol (1%, v/v). The effect of the use of [BMIM][PF6] as an additive in relatively small amounts on the reduction was also studied. We find that there is a decline in the enantioselectivity of the reduction in benzene. In addition, a decrease in the conversion of EOPB and the yield of EHPB with increasing [BMIM][PF6] concentrations occurs in either organic solvent–water biphasic systems or benzene.  相似文献   

9.
Qi M  Wu G  Chen S  Liu Y 《Radiation research》2007,167(5):508-514
The applications of room-temperature ionic liquids in the nuclear fuel cycle and radiation chemistry depend on a comprehensive knowledge of their stability and chemical properties under radiation conditions. In this work, the effect of gamma radiation on pure ionic liquid [bmim][PF6] was investigated in detail. The radiolysis of [bmim][PF6] leads to an increase of UV-vis absorbance and a decrease of fluorescence intensity with increasing radiation dose. Raman spectra proved that gamma radiation induced significant chemical scission of the n-butyl group (e.g. C-H and C-C scission) and damage to the [PF6]- anion. When the irradiated [bmim][PF6] samples were cooled, two crystal structures were found to coexist, and they suffered a continuous destruction under irradiation; their dose dependence, however, was different.  相似文献   

10.
An ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, was isolated from a Japanese fermented soybean paste. Strain CMW1 grew in the presence of 10 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), a commonly used ionic liquid. Additionally, strain CMW1 grew adequately in the presence of the hydrophilic ionic liquids 10 % (v/v) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]CF3SO3) or 2.5 % (v/v) 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]CF3SO3). Strain CMW1 produced an extracellular protease (BapIL) in the culture medium. BapIL was stable in the presence of 80 % (v/v) ionic liquids, [EMIM]CF3SO3, [BMIM]Cl, [BMIM]CF3SO3, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and functioned in 10 % (v/v) these ionic liquids. BapIL was stable at pH 4.0–12.6 or in 4004 mM NaCl solution, and exhibited activity in the presence of 50 % (v/v) hydrophilic or hydrophobic organic solvents. BapIL was completely inhibited by 1 mM PMSF and partially by 5 mM EDTA. BapIL belongs to the true subtilisins according to analysis of the deduced amino acid sequence. We showed that BapIL from the ionic liquid-tolerant B. amyloliquefaciens CMW1 exhibited tolerance to ionic liquid and halo, alkaline, and organic solvents.  相似文献   

11.
Biocatalytic preparation of acylated derivatives of flavonoid glycosides was performed using various immobilized lipases in two different ionic liquids, namely 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF(4)) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF(6)). The influence of various reaction parameters on the performance and the regioselectivity of the biocatalytic process was pointed out, using as model reaction the acylation of naringin and rutin with vinyl butyrate, catalyzed by immobilized Candida antarctica lipase at 60 degrees C. The biocatalytic modification of flavonoids strongly depended on the ionic liquid used, the molar ratio of substrates, as well as the acyl donor chain length. The highest conversion yield (about 65% after 96 h of incubation) was obtained with short chain acyl donors (up to four carbon atoms), at a relatively high molar ratio (10-15) in both ionic liquids used. The amount of monoacylated flavonoid derivatives produced in a single-step biocatalytic process in [bmim]BF(4) was up to 5.5 g/L for monoacylated rutin and 30 g/L for monoacylated naringin. The regioselectivity of the process was higher in [bmim]BF(4) than in [bmim]PF(6) or organic solvents. Reaction rates observed in ionic liquids were up to four times higher than those reported for organic media. The acylation of sugar moiety of rutin with various acyl donors affected its antioxidant potential towards both isolated LDL and total serum model in vitro. A significant increase of antioxidant activity was observed for rutin-4'-O-oleate.  相似文献   

12.
The influence of the two most commonly used ionic liquids (1-butyl-3-methyl imidazolium tetrafluoroborate, [BMIM][BF4], 1-butyl-3-methyl imidazolium hexafluorophosphate, [BMIM][PF6]) and three selected organic solvents (dimethylsulfoxide, ethanol, methanol) on the growth of Escherichia coli, Pichia pastoris and Bacillus cereus was investigated. [BMIM][BF4] was toxic at 1% (v/v) on all three microorganisms. The minimal inhibitory concentration (MIC) of [BMIM][BF4] on E. coli growth was between 0.7 and 1% (v/v). In contrast, [BMIM][PF6] was less toxic for P. pastoris and B. cereus, whereas E. coli was not able to tolerate [BMIM][PF6] (MIC value: 0.3–0.7% v/v). Growth of P. pastoris was unaffected by [BMIM][PF6] at 10% (v/v). Similar results were found for dimethylsulfoxide. Thus, ionic liquids (ILs) can have substantial inhibitory effects on the growth of microorganisms, which should be taken into account for environmental reasons as well as for the use of ILs as co-solvents in biotransformations. Revisions requested 2 November 2005; Revisions received 20 December 2005  相似文献   

13.
Enzymatic reactions in non-aqueous media have been shown to be effective in carrying out chemical transformation where the reactants are insoluble in water or water is a byproduct limiting conversion. Ionic liquids, liquid organic salts with infinitesimal vapor pressure, are potentially useful alternatives to organic solvents. It is known that the thermodynamic water activity is an important variable affecting the activity of enzymes in non-aqueous solvents. This study investigated the influence of water activity on the esterification of geraniol with acetic acid in ionic liquid [bmim]PF6 catalyzed by immobilized Candida antarctica lipase B. The conversion of geraniol in [bmim]PF6 was significant although the reaction rate was slower than in organic solvents. The profile of initial reaction rate-water activity was determined experimentally, and differed from the data reported for other non-aqueous solvents. A maximum in the initial reaction rate was found at aw = 0.6. The pseudo reaction equilibrium constant, Kx, was measured experimentally for the reaction. The average value of Kx in [bmim]PF6 was 12, 20-fold lower than the value reported for the same system in hexane.  相似文献   

14.
ABSTRACT: BACKGROUND: In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. RESULTS: From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling. CONCLUSIONS: The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments.  相似文献   

15.
A biphasic process design is often applied in whole-cell biocatalysis if substrate and product have low water solubility, are unstable in water or toxic for the biocatalyst. Some water immiscible ionic liquids (ILs) with adequate distribution coefficients have already been applied successfully as second liquid phase, which acts as a substrate reservoir and in situ extractant for the product. In this work, 12 new ILs were evaluated with respect to their applicability in biphasic asymmetric reductions of prochiral ketones in comparison to 9 already published ILs. The ILs under study are composed of seven different cations and three different anions. Recombinant Escherichia coli was used as whole-cell biocatalyst overexpressing the genes of a Lactobacillus brevis alcohol dehydrogenase (LB-ADH) and a Candida boidinii formate dehydrogenase (CB-FDH) for cofactor regeneration. Best results were achieved if ionic liquids with [PF6]- and [NTF]-anions were applied, whereas [FAP]-ILs showed minor qualification, e.g., the use of [HMPL][NTF] as second liquid phase for asymmetric synthesis of (R)-2-octanol resulted in a space–time-yield of 180 g L−1 d−1, a chemical yield of 95% and an enantiomeric excess of 99.7% in a simple batch process.  相似文献   

16.
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst.  相似文献   

17.
It is known that subtilisin shows poor transesterification activity in ionic liquids (ILs). The present work, taking subtilisin as the system, explores approaches for biocatalyst preparations, which are capable of yielding higher/adequate transesterification activity in these solvents. Of all the approaches tried, enzyme precipitated and rinsed with n-propanol (EPRP) gave the best results (about 10,000 times increase in initial rates in 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]) over what is obtained with pH tuned lyophilized powders). In case of water soluble ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), pH tuned lyophilized subtilisin did not show any transesterification activity. EPRP, however, gave an initial rate (for transesterification) of 2.78 mmol mg(-1) h(-1).  相似文献   

18.
The effects of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), on both thermodynamics and kinetic mechanism of the horseradish peroxidase (HRP)-catalyzed oxidation of guaiacol (2-methoxyphenol) by H2O2 were investigated. The ionic liquid stabilized the ground state of guaiacol by causing an 8-fold increase of Km from 3 to 23 mM upon the addition of 25% (v/v) [BMIM][BF4]. In addition, the effect of [BMIM][BF4] in decreasing the kcat value of HRP catalysis was described by a non-competitive inhibition mechanism. The value of the inhibition constant of [BMIM][BF4] was 2.9 M indicating that the ionic liquid plays the role of a weak non-competitive inhibitor for HRP catalysis.  相似文献   

19.
The effect of a water-miscible ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), on the horseradish peroxidase (HRP)-catalyzed oxidation of 2-methoxyphenol (guaiacol) with hydrogen peroxide (H2O2) was investigated. HRP maintains its high activity in the aqueous mixtures containing various concentrations of the ionic liquid and even in 90% (v/v) ionic liquid. In order to minimize the effect of solution viscosity on the kinetic constants of HRP catalysis, the enzymatic reactions in the subsequent kinetic study were performed in water-ionic liquid mixtures containing 25% (v/v) ionic liquid at maximum. As the concentration of [BMIM][BF4] increased for the oxidation of guaiacol by HRP, the K(m) value increased with a slight decrease in the k(cat) value: The K(m) value increased from 2.8 mM in 100% (v/v) water to 22.5 mM in 25% (v/v) ionic liquid, indicating that ionic liquid significantly weakens the binding affinity of guaiacol to HRP.  相似文献   

20.
The transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol catalyzed by alpha-chymotrypsin was examined in the ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF(6)]), and in combination with supercritical carbon dioxide (SC-CO(2)). The activity of alpha-chymotrypsin was studied to determine whether trends in solvent polarity, water activity, and enzyme support properties, observed with this enzyme in conventional organic solvents, hold for the novel environment provided by ionic liquids. alpha-Chymotrypsin freeze-dried with K(2)HPO(4), KCl, or poly(ethylene glycol) demonstrated no activity in [bmim][PF(6)] or [omim][PF(6)] at very low water concentrations, but moderate transesterification rates were observed with the ionic liquids containing 0.25% water (v/v) and higher. However, the physical complexation of the enzyme with poly(ethylene glycol) or KCl did not substantially stimulate activity in the ionic liquids, unlike that observed in hexane or isooctane. Activities were considerably higher in [omim][PF(6)] than [bmim][PF(6)]. Added water was not necessary for enzyme activity when ionic liquids were combined with SC-CO(2). These results indicate that [bmim][PF(6)] and [omim][PF(6)] provide a relatively polar environment, which can be modified with nonpolar SC-CO(2) to optimize enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号