首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.  相似文献   

2.
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species -- M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" -- were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, Sao Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.  相似文献   

3.
4.
Vaccination with M. bovis (BCG) essentially prolonged survival time (ST) of several strain mice, with the exception, of CBA/N, infected with M. tuberculosis H37Rv. ST of CBA/N, differing from CBA by xid mutation, was not prolonged by vaccination. Mouse strains with alternative alleles of BCG gene (s and r) and fzy gene as a genetic marker for Bcg5 were used for segregation analysis. It was shown that ST, the level of DTH reaction of mice infected with M. tuberculosis H37Rv, and protective effect of BCG vaccination did not depend on Bcg gene. However, Bcg gene, apparently, regulate the DTH response to PPD in mice only vaccinated with M. bovis (BCG).  相似文献   

5.
There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-Guérin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection.  相似文献   

6.
7.
Subtractive DNA hybridization of pathogenic M. bovis and BCG, and comparative genome-wide DNA microarray analysis of M. tuberculosis H37Rv and BCG identified several RD, designated as RD1 to RD16, between M. tuberculosis and M. bovis on the one hand and BCG on the other. These regions cover 108 ORF of M. tuberculosis H37Rv, and are deleted from all 13 BCG sub-strains currently used as anti-tuberculosis vaccines in different parts of the world. In this study, we evaluated cellular and humoral immune response in C57BL/6 mice immunized with the PPE protein Rv3425, encoded by an ORF found in RD11 of M. tuberculosis. Rv3425 protein induced an increased Th1/Th2 type immune response in mice, characterized by an elevated concentration of IFN-gamma in antigen stimulated splenocyte culture and a strong IgG(1) antibody response. These results provide evidence on the immunogenicity of the PPE protein Rv3425 which, together with its reported immunodominant characteristics, imply that it may be a candidate for development of a vaccine for the control of TB.  相似文献   

8.
New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in BCG caused reduced growth in aerated cultures compared to control BCG, but growth under limited oxygen availability was not markedly altered. Upon infection of mice, BCG:HspX displayed tissue-specific attenuation compared to control BCG, with reduced growth within the lung and liver but not the spleen. Both BCG:HspX and control BCG protected mice against aerosol M. tuberculosis challenge to a similar extent, however, immunodeficient mice infected with BCG:HspX survived significantly longer than mice infected with the control BCG strain. Therefore, altering the in vivo persistence of BCG by overexpression of HspX may be one important step towards developing a new tuberculosis vaccine with an improved safety profile and suitable protective efficacy against M. tuberculosis infection.  相似文献   

9.
Lipid formulations containing BCG strains Danish 1331 or Moreau (Rio de Janeiro) were trialled as oral vaccines in rodent models. In mice, oral-delivery of either strain resulted in BCG colonisation of the alimentary tract lymphatics and induction of gamma-interferon responses. In guinea pigs, both strains provided pulmonary protection against Mycobacterium tuberculosis aerosol challenge, as shown by significantly reduced bacterial loads and lung:body weight ratios. Lipid-formulated BCG provided superior protection against M. tuberculosis over unformulated orally-delivered BCG (Moreau), and equivalent protection to sub-cutaneous BCG (Danish) immunisation. Oral-delivery of lipid-formulated BCG may offer a practical alternative to parenteral-route BCG vaccination.  相似文献   

10.
M H Qin  M V Madiraju  M Rajagopalan 《Gene》1999,233(1-2):121-130
The gene order in the 5kb Mycobacterium tuberculosis dnaA region is rnpA, rpmH, dnaA, dnaN and recF. We show that M. tuberculosis DNA fragment containing the dnaA-dnaN intergenic region functioned as oriC, i.e., allowed autonomous replication to otherwise nonreplicative plasmids, in M. tuberculosis H37Ra (H37Ra), avirulent strain of M. tuberculosis, and in Mycobacterium bovis BCG (BCG), a closely related, slowly growing mycobacterial strain. Removal of Escherichia coli plasmid replication origin (ColE1) from the M. tuberculosis oriC plasmids did not abolish their ability to function as oriC, confirming that the autonomous replication activity of these plasmids is due to the presence of the DNA fragment containing the dnaA-dnaN intergenic region. Deletion analyses revealed that the minimal oriC DNA fragment is 814bp. The copy number of M. tuberculosis oriC plasmids containing ColE1 ori relative to chromosomal oriC is one and the 5' flanking region of minimal oriC contains features that support stable autonomous replication. The M. tuberculosis oriC did not function in rapidly growing mycobacterial species such as M. smegmatis. M. smegmatis oriC functioned only in M. fortuitum, but not in any of the slowly growing mycobacterial species such as M. tuberculosis and BCG. Together these data suggest that the replication initiation mechanisms in the slowly growing Mycobacteria are similar and probably different from those in the rapidly growing Mycobacteria and vice versa.  相似文献   

11.
We investigated the role of reactive oxygen species (ROS) in dendritic cell (DC) differentiation by 10-kDa Mycobacterium tuberculosis secretory Ag (MTSA) and survival of mycobacteria therein. Compared with GM-CSF, MTSA induced lower ROS production during DC differentiation from precursors. This result correlated with higher superoxide dismutase 1 expression in MTSA stimulated precursors as compared with GM-CSF stimulation. Furthermore, a negative regulation of protein kinase C (PKC) activation by ROS was observed during DC differentiation. ROS inhibited the rapid and increased phosphorylation of PKCalpha observed during DC differentiation by MTSA. In contrast, ROS inhibition increased the weak and delayed PKCalpha phosphorylation by GM-CSF. Similar to DC differentiation, upon activation with either M. tuberculosis cell extract (CE) or live Mycobacterium bovis bacillus Calmette-Guérin (BCG), DCs differentiated with MTSA (MTSA-DCs) generated lower ROS levels when compared with DCs differentiated with GM-CSF (GM-CSF-DCs). Likewise, a negative regulation of PKCalpha phosphorylation by ROS was once again observed in DCs activated with either M. tuberculosis CE or live M. bovis BCG. However, a reciprocal positive regulation between ROS and calcium was observed. Compared with MTSA-DCs, stimulation of GM-CSF-DCs with M. tuberculosis CE induced a 2-fold higher ROS-dependent calcium influx. However, pretreatment of MTSA-DCs with H(2)O(2) increased calcium mobilization. Finally, lower ROS levels in MTSA-DCs correlated with increased intracellular survival of M. bovis BCG when compared with survival in GM-CSF-DCs. Although inhibiting ROS in GM-CSF-DCs increased M. bovis BCG survival, H(2)O(2) treatment of MTSA-DCs decreased survival of M. bovis BCG. Overall our results suggest that DCs differentiated with Ags such as MTSA may provide a niche for survival and/or growth of mycobacteria following sequestration of ROS.  相似文献   

12.
Mycobacterium tuberculosis and Mycobacterium bovis cause tuberculosis, which is responsible for the deaths of more people each year than any other bacterial infectious disease. Disseminated disease with Mycobacterium bovis BCG, the only currently available vaccine against tuberculosis, occurs in immunocompetent and immunodeficient individuals. Although mycobacteria are obligate aerobes, they are thought to face an anaerobic environment during infection, notably inside abscesses and granulomas. The purpose of this study was to define a metabolic pathway that could allow mycobacteria to exist under these conditions. Recently, the complete genome of M. tuberculosis has been sequenced, and genes homologous to an anaerobic nitrate reductase (narGHJI), an enzyme allowing nitrate respiration when oxygen is absent, were found. Here, we show that the narGHJI cluster of M. tuberculosis is functional as it conferred anaerobic nitrate reductase activity to Mycobacterium smegmatis. A narG mutant of M. bovis BCG was generated by targeted gene deletion. The mutant lacked the ability to reduce nitrate under anaerobic conditions. Both mutant and M. bovis BCG wild type grew equally well under aerobic conditions in vitro. Histology of immunodeficient mice (SCID) infected with M. bovis BCG wild type revealed large granulomas teeming with acid-fast bacilli; all mice showed signs of clinical disease after 50 days and succumbed after 80 days. In contrast, mice infected with the mutant had smaller granulomas containing fewer bacteria; these mice showed no signs of clinical disease after more than 200 days. Thus, it seems that nitrate respiration contributes significantly to virulence of M. bovis BCG in immunodeficient SCID mice.  相似文献   

13.
Little is known about the intracellular events that occur following the initial inhibition of Mycobacterium tuberculosis by the first-line antituberculosis drugs isoniazid (INH) and ethambutol (EMB). Understanding these pathways should provide significant insights into the adaptive strategies M. tuberculosis undertakes to survive antibiotics. We have discovered that the M. tuberculosis iniA gene (Rv 0342) participates in the development of tolerance to both INH and EMB. This gene is strongly induced along with iniB and iniC (Rv 0341 and Rv 0343) by treatment of Mycobacterium bovis BCG or M. tuberculosis with INH or EMB. BCG strains overexpressing M. tuberculosis iniA grew and survived longer than control strains upon exposure to inhibitory concentrations of either INH or EMB. An M. tuberculosis strain containing an iniA deletion showed increased susceptibility to INH. Additional studies showed that overexpression of M. tuberculosis iniA in BCG conferred resistance to ethidium bromide, and the deletion of iniA in M. tuberculosis resulted in increased accumulation of intracellular ethidium bromide. The pump inhibitor reserpine reversed both tolerance to INH and resistance to ethidium bromide in BCG. These results suggest that iniA functions through an MDR-pump like mechanism, although IniA does not appear to directly transport INH from the cell. Analysis of two-dimensional crystals of the IniA protein revealed that this predicted transmembrane protein forms multimeric structures containing a central pore, providing further evidence that iniA is a pump component. Our studies elucidate a potentially unique adaptive pathway in mycobacteria. Drugs designed to inhibit the iniA gene product may shorten the time required to treat tuberculosis and may help prevent the clinical emergence of drug resistance.  相似文献   

14.
15.
Abstract Using field inversion gel electrophoresis (FIGE), different Mycobacterium tuberculosis strains, such as phage prototypes, exhibit different DNA restriction patterns which are easy to compare. Virulent and avirulent variants of M. tuberculosis H37, as well as daughter strains of M. bovis BCG, display characteristic DNA profiles. BCG strains isolated from suppurative adenitis following vaccination of French patients showed patterns identical to the BCG Pasteur strain used for vaccination. These results demonstrate that FIGE of DNA restriction fragments generated by Dra I represents a suitable technique for the analysis of mycobacteria at a genomic level. The Dra I profiles allow the differentiation and precise identification of the BCG Pasteur, Glaxo, Russian and Japanese strains.  相似文献   

16.
Modulating the host-immune response by the use of recombinant vaccines is a potential strategy to improve protection against microbial pathogens. In this study, we sought to determine whether secretion of murine GM-CSF by the bacillus Calmette-Guérin (BCG) vaccine influenced protective immunity against Mycobacterium tuberculosis. BCG-derived GM-CSF stimulated the in vitro generation of functional APCs from murine bone marrow precursors, as demonstrated by the infection-induced secretion of IL-12 by differentiated APCs, and the ability of these cells to present Ag to mycobacterium-specific T cells. Mice vaccinated with BCG secreting [corrected] murine GM-CSF (BCG:GM-CSF) showed increased numbers of CD11c+MHCII+ and CD11c-CD11b+F480+ cells compared with those vaccinated with control BCG, and this effect was most apparent in the draining lymph nodes at 7 and 14 days postvaccination. Vaccination with BCG:GM-CSF also resulted in enhanced expression of costimulatory molecules on migratory dendritic cells in the draining lymph nodes. The increased APC number was associated with an increase in the frequency of anti-mycobacterial IFN-gamma-secreting T cells generated after BCG:GM-CSF vaccination compared with vaccination with control BCG, and this effect was sustained up to 17 wk in the spleens of immunized mice. Vaccination with BCG:GM-CSF resulted in an approximately 10-fold increase in protection against disseminated M. tuberculosis infection compared with control BCG. This study demonstrates the potential of BCG secreting [corrected] immunostimulatory molecules as vaccines to protect against tuberculosis and suggests BCG:GM-CSF merits further appraisal as a candidate to control M. tuberculosis infection in humans.  相似文献   

17.
The existence of therapeutic agents and the bacille Calmette-Guérin (BCG) vaccine have not significantly affected the current tuberculosis pandemic. BCG vaccine protects against serious pediatric forms of tuberculosis but not against adult pulmonary tuberculosis, the most common and contagious form of the disease. Several vaccine candidates, including Mycobacterium tuberculosis recombinant proteins formulated in newer adjuvants or delivered in bacterial plasmid DNA have recently been described. An attractive source of vaccine candidates has been M. tuberculosis Ags present in culture supernatants of the initial phases of the bacterial growth in vitro. In this study we describe an Ag discovery approach to select for such Ags produced in vivo during the initial phases of the infection. We combined RP-HPLC and mass spectrometry to identify secreted or shed M. tuberculosis proteins eliminated in animal urine within 14 days after the infection. A peptide containing sequence homology with a hypothetical M. tuberculosis protein was identified and the recombinant protein produced in Escherichia coli. The protein was recognized by Ab (IgG2a and IgG1) and T cells (Th1) of mice infected with M. tuberculosis and by lymphoid cells from healthy donors who had a positive purified protein derivative skin test but not from tuberculosis patients. Moreover, this Ag induced protection in mice against M. tuberculosis at levels comparable to protection induced by BCG vaccine. These results validate the Ag discovery approach of M. tuberculosis proteins secreted or shed in vivo during the early phases of the infection and open new possibilities for the development of potential vaccine candidates or of markers of active mycobacterial multiplication and therefore active disease.  相似文献   

18.
The structure and distribution of a Mycobacterium bovis BCG insertion element of the IS21 family were investigated. Several IS21-like elements found in mycobacterial genomes were separated in four types, following their nucleic acid similarities. The M. bovis BCG IS21 element is highly similar to IS1533 (class I), 70% similar to IS1534 (class II), 52% similar to IS1532 (class III) of Mycobacterium tuberculosis, and 54% similar to both an Mycobacterium avium serovar 2 and an M. avium silvaticum IS (class IV). The M. bovis BCG IS21 element of the class I appears to be present in a single copy in the genome of M. bovis BCG, M. bovis, M. tuberculosis and Mycobacterium africanum and to be absent from all other tested species of the Corynebacteria-Mycobacteria-Nocardia group.  相似文献   

19.
20.
A family of autocrine growth factors in Mycobacterium tuberculosis   总被引:34,自引:0,他引:34  
Mycobacterium tuberculosis and its close relative, Mycobacterium bovis (BCG) contain five genes whose predicted products resemble Rpf from Micrococcus luteus. Rpf is a secreted growth factor, active at picomolar concentrations, which is required for the growth of vegetative cells in minimal media at very low inoculum densities, as well as the resuscitation of dormant cells. We show here that the five cognate proteins from M. tuberculosis have very similar characteristics and properties to those of Rpf. They too stimulate bacterial growth at picomolar (and in some cases, subpicomolar) concentrations. Several lines of evidence indicate that they exert their activity from an extra-cytoplasmic location, suggesting that they are also involved in intercellular signalling. The five M. tuberculosis proteins show cross-species activity against M. luteus, Mycobacterium smegmatis and M. bovis (BCG). Actively growing cells of M. bovis (BCG) do not respond to these proteins, whereas bacteria exposed to a prolonged stationary phase do. Affinity-purified antibodies inhibit bacterial growth in vitro, suggesting that sequestration of these proteins at the cell surface might provide a means to limit or even prevent bacterial multiplication in vivo. The Rpf family of bacterial growth factors may therefore provide novel opportunities for preventing and controlling mycobacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号