首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
N Kleckner 《Cell》1979,16(4):711-720
The sequences of insertions of the translocatable tetracycline-resistance element Tn10 into the repressor (cl) gene of bacteriophage lambda have been analyzed. Each insertion contains the same discrete set of Tn10 sequences flanked by a direct repetition of a 9 bp cl-gene sequence. The flanking repititions are generated by duplication of information present only in the target DNA molecule rather than by a Campbell-type recombination event between one 9 bp sequence on the target DNA and a second one provided on the incoming element. The repetitions do not contain genetic or structural information important for translocation. A genetically constructed Tn10 insertion which lacks flanking repetitions is fully functional in translocation to a new position. Tn10 insertions cluster at preferred positions along a target DNA (Kleckner et al., 1979). Sequence analysis shows that four independently isolated cl::Tn10 insertions occur at identical positions in the cl gene. We speculate that homology between Tn10 and its target, at some distance from the site of the actual recombination event, could be relevant to the preference of Tn10 for particular insertion sites.  相似文献   

2.
The possibility of translocation of the transposons Tn5 and Tn10 into the genome of Yersinia pestis, with the subsequent mutagenic effect was demonstrated. We revealed transposon harbouring clones at frequency 10(-4) to 10(-2). Derivatives of P1cml clr100ts phage served as vectors. Insertion of Tn10 transposon induced mutations in ilv, ser, arg, pur, pro, leu, nic, tyr, gua genes. The number of the insertion sites on the chromosome obtained for Tn5 was the same, these being arg, ade, pyr, leu, gua, trp, his, pan, ilv. The majority of auxotrophs did not revert. Occasionally, revertants were observed at frequencies 10(-8) to 10(-6). Unlike Escherichia coli, reversion was not accompanied by the loss of transposons. The rearrangements induced by transposons, presumably, near the insertion site, as well as duplications of transposons followed by incorporation of copies into novel sites, led to the appearance of additional defective genes, which made it possible to select various types of polyauxotrophs. Based on reiteration of coinciding double and triple mutant markers, we proposed a linkage group of genes within a segment of Y. pestis chromosome: lys ... tyr - ser - arg - ilv - leu - gua - ade(pur) - pro ... his ... pyr ... trp. The reasons for peculiarities of the behaviour of transposons in Y. pestis bacteria are discussed.  相似文献   

3.
Activation of Silent Genes by Transposons Tn5 and Tn10   总被引:8,自引:1,他引:7       下载免费PDF全文
A. Wang  J. R. Roth 《Genetics》1988,120(4):875-885
  相似文献   

4.
A number of independent insertions into bacteriophage lambda of the translocatable tetracycline-resistance element Tn10 have been isolated and characterized. The physical positions and relative orientations of several such insertions were determined. Two independent insertions appear to lie in the same orientation at or very near the same site in the cI gene, and two more lie in opposite orientations at or near the same position in or near the rex gene. Insertions in or near genes cI, rex, and cIII have been characterized genetically for their effects on expression of nearby genes. Tn10 appears to exert a polar effect on expression of distal genes when it is inserted within an operon, even when expression of that operon is under the influence of lambda N-function. In addition, Tn10 insertions in rex appear to influence in some way expression of an "upstream" gene, cI. Lambda derivatives carrying Tn10 give rise to spontaneously occurring, tetracycline-sensitive deletions at high frequencies. It is likely that formation of these deletions is promoted in some way by the Tn10 element. Lambda::Tn10 phages carrying a Tn10 element that has undergone several successive cycles of translocation since its first isolation and characterization have been analyzed. The results confirm that Tn10 often retains its physical and functional integrity during many cycles of translocation. Lambda derivatives carrying Tn10 have been used to generate insertions of Tn10 in the chromosome of Escherichia coli. This process is independent of recA function, and seems to be quite analogous to the translocation of Tn10 in Salmonella typhimurium as studied previously.  相似文献   

5.
Genetic organization of transposon Tn10   总被引:60,自引:0,他引:60  
Transposon Tn10 is 9300 bp in length, with 1400 bp inverted repeats at its ends. The inverted repeats are structurally intact IS-like sequences (Ross et al., 1979). Analysis of deletion mutants and structural variants of Tn10, reported below, shows that the two IS10 segments contain all of the Tn10-encoded genetic determinants, both sites and functions, that are required for transposition. Furthermore, the two repeats (IS10-Right and IS10-Left) are not functionally equivalent: IS10-Right is fully functional and is capable by itself of promoting normal levels of Tn10 transposition; IS10-Left functions only poorly by itself, promoting transposition at a very low level when IS10-Right is inactivated. Complementation analysis shows that IS10-Right encodes at least one function, required for Tn10 transposition, which can act in trans and which works at the ends of the element. Also, all of the sites specifically required for normal Tn10 transposition have been localized to the outermost 70 bp at each end of the element; there is no evidence that specific sites internal to the element play an essential role. Finally, Tn10 modulates its own transposition in such a way that transposition-defective point mutants, unlike deletion mutants, are not complemented by functions provided in trans; and wild-type Tn10, unlike deletion mutants, is not affected by functions provided in trans from a "high hopper" Tn10 element.  相似文献   

6.
Summary Insertion of Tn3 generates a five base pair repeat of a nucleotide sequence indigenous to the recipient genome. Tn3 promoted deletions extend precisely from the Tn3 terminus and remove one of the 5 base pair repeats while not affecting the ability of Tn3 to subsequently undergo translocation. A direct repeat of a 10 bp sequence located in the Tn3 termini occurs internally within Tn3 and may affect the orientation of insertion.  相似文献   

7.
D G Ross  J Swan  N Kleckner 《Cell》1979,16(4):721-731
We report here the physical structures of deletions and inversions promoted by the translocatable tetracycline-resistance element Tn10. DNA/DNA heteroduplex and restriction enzyme analyses of alterations in the genome of bacteriophage lambda suggest that both types of DNA alterations almost always originate at the internal termini of the 1400 bp terminal inverted repetitions of Tn10. Tn10-promoted deletions remove a single contiguous DNA segment beginning at one such terminus; Tn10-promoted inversions are more complex, and involve both an inversion and a specific deletion of Tn10 DNA.  相似文献   

8.
A procedure is described that selects for the insertion of transposable antibiotic resistance elements in a variety of recipient replicons. The selected translocation procedure, which employs a plasmid having a temperature-sensitive defect in replication as a donor of transposable genetic elements, was used to investigate certain characteristics of the translocation process. Our results indicate that translocation of the Tn3 element from plasmid to plasmid occurs at a 10(3)- to 10(4)-times-higher frequency than from plasmid to chromosome. In both cases, continued accumulation of Tn3 on recipient genomes is prevented by development of an apparent equilibrium when only a small fraction of molecules in the recipient population contain Tn3. An alternative method for estimation of translocation frequency has shown that the translocation process is temperature sensitive and that its frequency is unaffected by the presence of host recA mutation. Insertions of Tn3 onto the 65 X 10(6)-dalton R6-5 plasmid in Escherichia coli are clustered on EcoRI fragments 3 (8 of 23 insertions) and 9 (7 of 23 insertions), which contain 12 and 5%, respectively, of the R6-5 genome. The occurrence of multiple insertions of Tn3 within EcoRI fragment 9, which contains the IS1 element and a terminus of the Tn4 element, is consistent with earlier evidence indicating that terminal deoxyribonucleic acid sequences of already present transposable elements may provide recognition sequences for subsequent illegitimate recombinational events.  相似文献   

9.
UV irradiation induced the precise excision of Tn10 inserted in met, trp or srl in a Salmonella typhimurium strain; mitomycin C was also found to induce the frequency of precise excision of Tn10 from srl or met. Precise excision of Tn10 was not increased by either UV or mitomycin C in a recA mutant. Similarly, a recA mutant derived from a uvrD strain showed a drastic reduction in the high spontaneous levels of precise excision of Tn10 of this strain. These results indicate that recA is involved in the increased precise excision of Tn10. In contrast to point mutations excision of Tn10 was found to be UV inducible in a top mutant.  相似文献   

10.
The effect of temperature on the translocation frequency of the Tn3 element was investigated. The temperature optimum for translocation of Tn3 was in the range from 26 to 30 degrees C. At temperatures above 30 degrees C, the translocation frequency decreased rapidly and linearly; at 36 degrees C it was only 5% of the frequency observed at 30 degrees C. The duration and reversibility of the temperature effect were utilized to demonstrate a requirement for protein synthesis in the translocation process.  相似文献   

11.
M A Davis  R W Simons  N Kleckner 《Cell》1985,43(1):379-387
  相似文献   

12.
13.
The complete nucleotide sequence of Tn10 has been determined. The dinucleotide signature and percent G+C of the sequence had no discontinuities, indicating that Tn10 constitutes a homogeneous unit. The new sequence contained three new open reading frames corresponding to a glutamate permease, repressors of heavy metal resistance operons, and a hypothetical protein in Bacillus subtilis. The glutamate permease was fully functional when expressed, but Tn10 did not protect Escherichia coli from the toxic effects of various metals.  相似文献   

14.
Summary Mutations in and near the Salmonella typhimurium histidine transport operon were generated by insertion of the translocatable tetracycline-resistance element Tn10. Deletion mutants affecting histidine transport genes were subsequently isolated in several of the Tn10-containing strains. Tn10 insertions in hisJ occurred preferentially at one site, designated site A. This same site was also the preferential endpoint of deletions originating from Tn10 insertions at two neighboring sites. Thus, Tn10 insertion and Tn10-stimulated deletion formation appear to involve a common DNA-recogition step.  相似文献   

15.
The bacterial transposon Tn10 has previously been shown to move to other genomic sites by a conservative mechanism, whereby the transposon is excised by double-strand breaks and inserted between a pair of staggered nicks at the target. Other transposons, like Tn3, have been shown to transpose by a replicative mechanism that involves symmetrical nicking of the element and formation of the 'Shapiro intermediate', which can mature into either a cointegrate or a simple insert. The situation with respect to Tn5 is unclear; it was originally reported to use a conservative mechanism, but other evidence suggests that the mechanism might be replicative. In this paper, rearrangements of adjacent DNA promoted by Tn10 and Tn5 have been compared using positive selection for galactose-resistance to detect such rearrangements. Tn10 promoted the formation of adjacent deletions (that started from an inside end of Tn10), deletion/inversions and simple IS10 insertions, but no cointegrates. This behaviour is fully consistent with a conservative mechanism. In contrast, Tn5 was found to promote formation of adjacent deletions (that started mainly from an outside end of Tn5), IS50 insertions (that were frequently accompanied by inversions of adjacent DNA) and cointegrates. These characteristics seem compatible with a replicative, rather than a conservative, mode of transposition. Clearly, Tn5 and Tn10 exhibit some significant differences in their transposition. These results, and results of some previous experiments, have been interpreted to mean that Tn5 could use a replicative mechanism for its transposition.  相似文献   

16.
The effect of mutations in dnaA(dnaA46), dnaG(dnaG3), dnaC (dnaC1 and dnaC2) and dnaB genes on transposition of two transposons, Tn5 and Tn10, from bacteriophage lambda genome into the chromosome of host cells has been studied. Transposition was performed at permissive temperatures for the mutant recipients. The mutations in dnaA, dnaC, dnaG genes were shown to decrease the transposition of Tn10 for some orders of magnitude as compared with transposition registered in wild type cells. Independence of Tn5 transposition of the above mentioned genes was demonstrated, providing evidence on the different modes of transposition of these two Tn-elements.  相似文献   

17.
18.
The kinetics of accumulation of resident transposon copies in a dividing population has been defined using a special experimental system. Analysis of the kinetics made it possible to estimate the probability of transposition for Tn5 as 2.5 X 10(-4) and for Tn10 as 2.3 X 10(-6) per cell per generation. Transposition of the composite elements does not depend on RecBC or RecF pathways of recombination. The fraction of the bacterial population with tandem duplications in the proA region of the genome is permanent for Escherichia coli. It is independent of the recombination pathways (RecBC of RecF) and the integrity of DNA polymerase I.  相似文献   

19.
Four mutations were studied which lead to increasing the frequency of transposon Tn1 translocation into different replicons. These mutations (het1, het2, het3 and het4) increase the frequency of Tn1 translocation 10-20-fold. The het1 mutation is recessive and has been localized in the 90-94.5 min region of the bacterial chromosome. The mutation effects Tn1 transposition in the presence of F plasmid only. As we have demonstrated recently, F-plasmid inhibits Tn1 transposition in Escherichia coli cells. The het1 mutation eliminates this inhibition. Unlike het2, het3 and het4 mutations, het1 is responsible for resistance to male phages f1, f2, MS2 and inhibition of conjugative transfer in F+ bacteria.  相似文献   

20.
We have investigated by Southern blot hybridization the rate of IS10 transposition and other Tn10/IS10-promoted rearrangements in Escherichia coli and Salmonella strains bearing single chromosomal insertions of Tn10 or a related Tn10 derivative. We present evidence for three primary conclusions. First, the rate of IS10 transposition is approximately 10(-4) per cell per bacterial generation when overnight cultures are grown and plated on minimal media and is at least ten times more frequent than any other Tn10/IS10-promoted DNA alteration. Second, all of the chromosomal rearrangements observed can be accounted for by two previously characterized Tn10-promoted rearrangements: deletion/inversions and deletions. Together these rearrangements occur at about 10% the rate of IS10 transposition. Third, the data suggest that intramolecular Tn10-promoted rearrangements preferentially use nearby target sites, while the target sites for IS10 transposition events are scattered randomly around the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号