首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for locating the O-(2-hydroxypropyl) groups in O-(2-hydroxypropyl)-substituted guar. Per-O-methylation of the O-(2-hydroxypropyl)guar yielded guar that was partially O-methylated and partially O-(2-methoxypropyl)ated. This polymer was hydrolyzed, to afford a mixture of partially O-methylated monosaccharides and partially O-(2-methoxypropylated), partially O-methylated monosaccharides. These monosaccharide derivatives were reduced, and the alditols acetylated, to give a mixture of partially O-acetylated, partially O-methylated alditols with partially O-acetylated, partially O-(2-methoxypropyl)ated, partially O-methylated alditols. These alditol derivatives were identified by gas-liquid chromatography-mass spectrometry, and quantitated by gas-liquid chromatography.  相似文献   

2.
Post-translational modification of proteins is a ubiquitous mechanism of signal transduction in all kingdoms of life. One such modification is addition of O-linked N-acetylglucosamine to serine or threonine residues, known as O-GlcNAcylation. This unusual type of glycosylation is thought to be restricted to nucleocytoplasmic proteins of eukaryotes and is mediated by a pair of O-GlcNAc-transferase and O-GlcNAc hydrolase enzymes operating on a large number of substrate proteins. Protein O-GlcNAcylation is responsive to glucose and flux through the hexosamine biosynthetic pathway. Thus, a close relationship is thought to exist between the level of O-GlcNAc proteins within and the general metabolic state of the cell. Although isolated apparent orthologues of these enzymes are present in bacterial genomes, their biological functions remain largely unexplored. It is possible that understanding the function of these proteins will allow development of reductionist models to uncover the principles of O-GlcNAc signaling. Here, we identify orthologues of both O-GlcNAc cycling enzymes in the genome of the thermophilic eubacterium Thermobaculum terrenum. The O-GlcNAcase and O-GlcNAc-transferase are co-expressed and, like their mammalian orthologues, localize to the cytoplasm. The O-GlcNAcase orthologue possesses activity against O-GlcNAc proteins and model substrates. We describe crystal structures of both enzymes, including an O-GlcNAcase·peptide complex, showing conservation of active sites with the human orthologues. Although in vitro activity of the O-GlcNAc-transferase could not be detected, treatment of T. terrenum with an O-GlcNAc-transferase inhibitor led to inhibition of growth. T. terrenum may be the first example of a bacterium possessing a functional O-GlcNAc system.  相似文献   

3.
Two methods are described for locating the O-(carboxymethyl) groups in O-(carboxymethyl)guar. In Method I, O-(carboxymethyl)guar was depolymerized by methanolysis, the O-(carboxymethyl) groups were reduced, and the mixture of methyl glycosides and O-(2-hydroxyethyl)-substituted methyl glycosides was converted into a mixture of per-O-acetylated alditols and partially O-(2-acetoxyethyl)ated, partially O-acetylated alditols. Analysis of these alditols by gas-liquid chromatography-mass spectrometry allowed the positions of substitution of the O-(carboxymethyl) groups on the galactosyl groups and mannosyl residues to be determined. However, this method did not distinguish between O-(carboxymethyl) substitution on 4-linked and 4,6-linked mannosyl residues. This limitation was overcome by the more-detailed analysis provided by Method II, in which O-(carboxymethyl)guar was carboxyl-reduced, the product methylated, the glycosyl residues hydrolyzed, the sugars reduced, and the alditols acetylated to yield a mixture of partially O-acetylated, partially O-methylated alditols and partially O-acetylated, partially O-(2-methoxyethyl)ated, partially O-methylated alditols. These derivatives, when separated and quantitated by g.l.c., and identified by g.l.c.-m.s., gave a quantitative measure of every type of carboxymethyl substitution in guar.  相似文献   

4.
2-O-Benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-, 4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-, and 2-O-benzoyl-3,4,6-tri-O-benzyl-α-d-galactopyranosyl chloride were converted into the corresponding 2,2,2-trifluoroethanesulfonates, and these were treated with allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give allyl 2-O-benzoyl-4-O-[2-O-benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-β-d-galactopyranosyl]-3,6-di-O-benzyl- α-d-galactopyranoside (26; 41% yield), allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl- α-d-galactopyranoside (27; 62% yield), and allyl 2-O-benzoyl-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-d-galactopyranosyl)-3,6-di-O-benzyl-α-d-galactopyranoside (28; 65% yield). All disaccharides were free from their α anomers. Disaccharides 26 and 27 were found to be base-sensitive, and were de-esterified by KCN in aqueous ethanol, and debenzylated with H2-Pd. Attempts to produce (1→4)-β-d-galactopyranosides from the coupling of a number of fully esterified d-galactopyranosyl sulfonates to allyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside were unsuccessful.  相似文献   

5.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

6.
Treatment of 2,3,4,6-tetra-O-methyl-d-glucose with 10 molar equivalents ofn 30% aqueous hydrogen peroxide and 2 molar equivalents of potassium hydroxide afforded, after chromatographic separation, 2,3,4,6-tetra-O-methyl-d-gluconolactone. 1-O-formyl-2,3,5-tri-O-methyl-d-arabinose methyl hemiacetal (7), 2,3,5-tri-O-methyl-d-arabinonolactone, methyl 2,3,5-tri-O-methyl-d-arabinoside, O-(2,4-di-O-methyl-d-erythrose)-(1'→3)-2,4-di-O-methyl-d-erythronic acid, and O-(2,4-di-O-methyl-d-erythrose)-(1′→2)-3-O-methyl-d-glyceraldehyde. The proportions of the products depended on the reaction conditions, especially the time, temperature, and the presence or absence of magnesium hydroxide. Formation of the products is explained by a series of reactions beginning with the addition of hydrogen peroxide to the carbonyl form of the methylated sugar. The adduct, with the help of superoxide radical and a molecule of hydrogen peroxide, breaks up in two ways, giving 2,3,4,6-tetra-O-methyl-d-gluconic acid and 7. The formic ester, on hydrolysis, gives 2,3,5-tri-O-methyl-d-arabinose, which undergoes a similar series of reactions, affording 2,3,5-tri-O-methyl-d-arabinonic acid, and presumably, 1-O-formyl-2,4-di-O-methyl-d-erythrose methyl hemiacetal. Apparently, the latter compound, on hydrolysis, forms a dimer, which, with alkaline hydrogen peroxide, undergoes a similar series of reactions, ultimately affording O-(2,4-di-O-methyl-d-erythrose)-(1→3)-2,4-di-O-methyl-d-erythronic acid and O-(2,4-di-O-methyl-d-erythrose)-(1→2)-3-o-methyl-d-glyceraldehyde. With a larger amount of alkali, under more-severe conditions, oxidation of 2,3,4,6-tetra-O-methyl-d-glucose proceeds further, with production of up to 3 moles of formic acid per mole of methylated sugar.  相似文献   

7.
《Life sciences》1996,58(19):PL303-PL308
O6-Alkylguanine derivatives sensitize tumor cells to chloroethylnitrosourea (CENU) chemotherapy by inactivation of O6-methylguanine-DNA methyltransferase (MGMT), which repairs CENU-induced O6-alkylguanines in DNA by accepting the alkyl group at a cysteine moiety. To test the biological significance of synthesized O6-fluorobenzylguanine derivatives, we measured their ability of inactivation of MGMT activity and their effects on the cytotoxicity of 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) in comparison with the effects of O6-benzylguanine and O6-phenylguanine. The O6-(4-and 3-fluorobenzyl)guanines considerably reduced the MGMT activity of HeLa S3 cell-free extract as did O6-benzylguanine. In contrast, O6-(2-fluorobenzyl)guanine and O6-phenylguanine had less of an effect on the activity. Two-hour pretreatment of O6-(4-and 3-fluorobenzyl)guanines potentiated ACNU cytotoxicity in HeLa S3 cells to a greater extent than did O6-(2-fluorobenzyl)guanine and O6-phenylguanine. The enhancement effects were consistent with the depletion of MGMT activity after the pretreatment of O6-fluorobenzylguanine derivatives. O6-Fluorobenzylguanines with a fluoro-substitution at the 4- or 3-position of the benzyl group were comparable to O6-benzylguanine and were powerful MGMT inactivators. The chemical features of the O6-benzyl group are a biologically important determinant in the reaction evolution with MGMT.  相似文献   

8.
Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1R245A knock-in), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1R245A knock-in and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein''s functions.  相似文献   

9.
O-(2,4-Di-O-chloroacetyl-α-l-rhamnopyranosyl)-(1 → 2)-O-(3,4,6-tri-O-benzoyl-α-d-galactopyranosyl)-(1 → 3)-O-(2-acetamido-4,6-di-O-acetyl-2-deoxy-α-d-glycopyranosyl)-(1 → 3)-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate (1) was synthesized in a stepwise manner, using the following monosaccharide units: 2-(trimethylsilyl)ethyl 2,4-di-O-benzoyl-α-l-rhamnopyranoside, 2-azido-4,6-O-benzylidene-3-O-chloroacetyl-2-deoxy-β-d-glycopyranosyl chloride, methyl 3,4,6-tri-O-benzoyl-2-O-(4-methoxybenzyl)-1-thio-β-d-galactopyranoside, and 2,4-di-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranosyl chloride. Compound 1 corresponds to a complete tetrasaccharide repeating unit of the O-specific polysaccharide of the lipopolysaccharide of Shigella dysenteriae type 1.  相似文献   

10.
Investigation of the acetolysis products of a partially desulphated sample of the polysaccharide isolated from Pachymenia carnosa led to the isolation and characterization of the following oligosaccharides: 3-O-α-D-galactopyranosyl-D-galactose (1), 4-O-β-D-galactopyranosyl-D-galactose (2), 3-O-(2-O-methyl-α-D-galactopyranosyl)-D-galactose (3), a 4-O-galactopyranosyl-2-O-methylgalactose (4), 3-O-α-D-galactopyranosyl-6-O-methyl-D-galactose (5), 4-O-β-D-galactopyranosyl-2-O-methyl-D-galactose (6), 2-O-methyl-4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (14), O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-D-galactose (8), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (9), O-β-D-galactopyranosyl-(1→4)-O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-D-galactose (11), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (12), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (13), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (16), and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (10). In addition, evidence was obtained for the presence of 4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (7) and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-6-O-methyl-D-galactose (15).  相似文献   

11.
3,4-Di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl bromide (1) reacts with methyl 2,3-anhydro-α-d-ribopyranoside (2) to afford, in high yield, methyl 2,3-anhydro-4-O- (3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranosyl)-β-d-ribopyranoside (3). Deacetylation of 3 gave 4, which reacted with 2,3,4-tri-O-acetyl-α-d-xylopyranosyl bromide to give the branched tetrasaccharide derivative 5, which, in turn, was converted by a series or conventional reactions into methyl 4-O-[3,4-di-O-(β-d-xylopyranosyl)-β-d- xylopyranosyl]-β-d-xylopyranoside. The reaction of 1 with its hydrolysis product gave 3,4-di-O-acetyl-2-O-benzyl-α-d-xylopyranosyl 3,4-di-O-acetyl-2-O-benzyl-β-d-xylopyranoside, which was also isolated after the reaction of 1 with 2.  相似文献   

12.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

13.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

14.
In the course of a chemotaxonomic survey of New Zealand Podocarpus species, a number of new flavonoid glycosides have been isolated from P. nivalis. These are: luteolin 3′-O-β-D-xyloside, luteolin 7-O-β-D-glucoside-3′-O-β-D-xyloside, dihydroquercetin 7-O-β-D-glucoside, 7-O-methyl-(2R:3R)-dihydrokaempferol 5-O-β-D-glucopyranoside, 7-O-methyl-(2R:3R)-dihydroquercetin 5-O-β-D-glucopyranoside, 7-O-methylkaempferol 5-O-β-D-glucopyranoside and 7-O-methylquercetin 5-O-β-D-glucopyranoside. Diagnostically useful physical techniques for distinguishing substitution patterns in dihydroflavonols are discussed and summarized. Glucosylation of the 5-hydroxyl group in (+)-dihydroflavonols is shown to reverse the sign of rotation at 589 nm.  相似文献   

15.
Applications of ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate, O,O-diethyl O-((p-(methylsulfinyl)phenyl) phosphorothioate, and O,O-diethyl S-[2-(ethylthio)ethyll phosphorotbioate effectively controlled Trichodorus christiei on centipede grass. Populations of Pratylenchus spp. and Xiphinema americanum were significantly reduced with a mixture of methanesulfonic acid, 2,4-dichlorophenyl ester and 1,2-dibromo-3-chloropropane. Ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate and O,O-diethyl O-((p-(methylsulfinyl)phenyl phosphorothioate significantly suppressed populations of Pratylenchus spp., and the latter reduced populations of X. arnericanum. Ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate and O,O-diethyl O-((p-methylsulfinyl) phenyl) phosphorothioate significantly reduced populations of Criconemoides ornatus. Increased seed production was correlated with nematode control.  相似文献   

16.
Homoserine esterification in green plants   总被引:6,自引:3,他引:3       下载免费PDF全文
Extracts of phylogenetically diverse plans were surveyed for their ability to synthesize the following homoserine esters which are potential precursors for methionine and threonine synthesis in green plants: O-acetyl-, O-oxalyl-, O-succinyl-, O-malonyl-, and O-phosphohomoserine. Synthesis of O-acylhomoserine esters was detected only in Pisum sativum L. and Lathyrus sativus L. Extracts of P. sativum, a plant known to accumulate O-acetylhomoserine, catalyzed the specific synthesis of this ester from homoserine and acetyl-CoA. Extracts of L. sativus, a plant known to accumulate O-oxalylhomoserine, catalyzed the specific synthesis of this ester from homoserine and oxalyl-CoA. None of the other plants surveyed, including representatives of the green algae, horsetails, gymnosperms, and angiosperms, catalyzed the synthesis of any of the O-acylhomoserine esters studied. In contrast, synthesis of O-phosphohomoserine by the reaction catalyzed by homoserine kinase was demonstrated in extracts of all plants examined, including the two exceptional legumes.  相似文献   

17.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

18.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

19.
Anthocyanins in Caprifoliaceae   总被引:1,自引:0,他引:1  
The qualitative and relative quantitative anthocyanin content of 19 species belonging to the genera Sambucus, Lonicera and Viburnum in the family Caprifoliaceae has been determined. Altogether 12 anthocyanins were identified; the 3-O-glucoside (2), 3-O-galactoside (5), 3-O-(6″-O-arabinosylglucoside) (7), 3-O-(6″-O-rhamnosylglucoside) (9), 3-O-(2″-O-xylosyl-6″-O-rhamnosylglucoside) (10), 3-O-(2″-O-xylosylgalactoside) (11), 3-O-(2″-O-xylosylglucoside) (12), 3-O-(2″-O-xylosylglucoside)-5-O-glucoside (14), 3-O-(2″-O-xylosyl-6″-O-Z-p-coumaroylglucoside)-5-O-glucoside (15) and 3-O-(2″-O-xylosyl-6″-O-E-p-coumaroylglucoside)-5-O-glucoside (16) of cyanidin, in addition to the 3-O-glucosides of pelargonidin and delphinidin (1 and 3). Pigment 7 is the first complete identification of the disaccharide vicianose, 6″-O-α-arabinopyranosyl-β-glucopyranose, linked to an anthocyanidin.  相似文献   

20.
Numerous studies on cancers, biopharmaceuticals, and clinical trials have necessitated comprehensive and precise analysis of protein O-glycosylation. However, the lack of updated and convenient databases deters the storage of and reference to emerging O-glycoprotein data. To resolve this issue, an O-glycoprotein repository named OGP was established in this work. It was constructed with a collection of O-glycoprotein data from different sources. OGP contains 9354 O-glycosylation sites and 11,633 site-specific O-glycans mapping to 2133 O-glycoproteins, and it is the largest O-glycoprotein repository thus far. Based on the recorded O-glycosylation sites, an O-glycosylation site prediction tool was developed. Moreover, an OGP-based website is already available (https://www.oglyp.org/). The website comprises four specially designed and user-friendly modules: statistical analysis, database search, site prediction, and data submission. The first version of OGP repository and the website allow users to obtain various O-glycoprotein-related information, such as protein accession Nos., O-glycosylation sites, O-glycopeptide sequences, site-specific O-glycan structures, experimental methods, and potential O-glycosylation sites. O-glycosylation data mining can be performed efficiently on this website, which will greatly facilitate related studies. In addition, the database is accessible from OGP website (https://www.oglyp.org/download.php).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号