首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.  相似文献   

2.
Chromatography of aspartate transcarbamoylase from Escherichia coli on agarose-immobilized dyes and alkyl-agaroses of differing carbon length were investigated. The bacterial aspartate transcarbamoylase was bound by Procoin red HE3B-agarose and Cibacron blue F3GA-agarose nearly completely under the conditions chosen relative to other agarose-coupled dyes. The aspartate transcarbamoylase holoenzyme was eluted from the Procion red HE3B-agarose slightly later than from the Cibacron blue F3GA-agarose during salt gradient elution. The catalytic trimer of the enzyme as well as its regulatory dimer were eluted by a lower salt concentration from both dye-agarose gels than the concentration required to elute the holoenzyme. The interaction of the catalytic trimer with the Procion red HE3B-agarose and Cibacron blue F3GA-agarose gels may be a determinant in the holoenzyme being retained on these resins. Of those alkyl-agaroses tested, the ethyl-, propyl- and hexyl-agarose gels bound the majority of aspartate transcarbamoylase activity. Chromatography of aspartate transcarbamoylase on ethyl-agarose found it to be eluted by a low salt concentration. A purification scheme for relatively small amounts of aspartate transcarbamoylase utilizing Procion red HE3B-agarose and ethyl-agarose is presented. This purification scheme is particularly useful for mutant versions of aspartate transcarbamoylase which cannot be purified by literature procedures.  相似文献   

3.
Escherichia coli aspartate transcarbamoylase is feedback inhibited by CTP and UTP in the presence of CTP. Here, we show by X-ray crystallography that UTP binds to a unique site on each regulatory chain of the enzyme that is near but not overlapping with the known CTP site. These results bring into question all of the previously proposed mechanisms of allosteric regulation in aspartate transcarbamoylase.  相似文献   

4.
The activity and cooperativity of Escherichia coli aspartate transcarbamoylase (ATCase) vary as a function of pH, with a maximum of both parameters at approximately pH 8.3. Here we report the first X-ray structure of unliganded ATCase at pH 8.5, to establish a structural basis for the observed Bohr effect. The overall conformation of the active site at pH 8.5 more closely resembles the active site of the enzyme in the R-state structure than other T-state structures. In the structure of the enzyme at pH 8.5 the 80's loop is closer to its position in R-state structures. A unique electropositive channel, comprised of residues from the 50's region, is observed in this structure, with Arg54 positioned in the center of the channel. The planar angle between the carbamoyl phosphate and aspartate domains of the catalytic chain is more open at pH 8.5 than in ATCase structures determined at lower pH values. The structure of the enzyme at pH 8.5 also exhibits lengthening of a number of interactions in the interface between the catalytic and regulatory chains, whereas a number of interactions between the two catalytic trimers are shortened. These alterations in the interface between the upper and lower trimers may directly shift the allosteric equilibrium and thus the cooperativity of the enzyme. Alterations in the electropositive environment of the active site and alterations in the position of the catalytic chain domains may be responsible for the enhanced activity of the enzyme at pH 8.5.  相似文献   

5.
Zn2+ is tetrahedrally bonded to the 4 nonadjacent thiols of each regulatory chain (Mr 17,000) near r-c contacts between catalytic (c) and regulatory chains (r) in aspartate transcarbamoylase (ATCase; c6r6). This paper reports on Zn2+ interactions with r dimer in the absence of stabilizing r-c contacts. After r2 and c3 subunits were separated, -SH groups of r2 were titrated with p-(hydroxymercuri)benzenesulfonate (PMPS) at pH 7.0. The concomitant release of Zn2+ (2 equiv/r dimer) was quantitated with 4-(2-pyridylazo)resorcinol (PAR) and was a linear function of PMPS added until 8 mercaptide bonds per r2 were formed. Breakage of 1 of 4 Zn2(+)-sulfur bonds in a Zn2+ binding cluster therefore makes the other three bonds more labile. From stopped-flow measurements, the PMPS-promoted Zn2+ release from r2 or mercaptide bond formation with 10- to 20-fold excess PMPS/r2-SH at pH 7.0 was first order with an Arrhenius activation energy Ea = 10 kcal/mol and a half-time t 1/2 = 9 +/- 2 ms at 20 degrees C without inhibitory anions present. The rate of mercurial-promoted Zn2+ release from r2 is at least 77 times faster than that from intact c6r6 [Hunt, J.B., Neece, S.H., Schachman, H.K., and Ginsburg, A. (1984) J. Biol. Chem. 259, 14793]; this indicates that Zn2+ binding clusters are more accessible to attack by PMPS than are those in ATCase. The addition of a 25-fold excess of the multidentate fluorescent chelator quin-2 to r2 gave a rate of Zn2+ dissociation that was 1/210th of that observed with excess mercurial. Furthermore, the Zn(PAR)1 complex was identified as the active species in the transfer of Zn2+ from Zn(PAR)2 to aporegulatory subunits, with kappa = (8 +/- 3) x 10(5) M-1 s-1 at pH 7.0 and 15 degrees C for this second-order association reaction. Although kinetic results are dependent on the mechanisms involved, an affinity constant K'A = (1.3 +/- 0.6) x 10(12) M-1 for Zn2+ binding to r dimer at pH 7.0 and 20 degrees C in the absence and presence of 100 mM KCl could be determined spectrally by rapid equilibration with the high-affinity, sensitive metalloindicators indo-1 and quin-2. This K'A value is based on the assumptions that Zn2+ binding sites in r2 are equivalent (noninteracting) and that apo-r2 does not dissociate; if apo-r2 dissociates, K'A approximately 10(14) M-1. Within experimental error, the K'A value was independent of [indo-1]/[r2] ratios from 36 to 3 with 0.3-8 microM r2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The release of Zn2+ from aspartate transcarbamoylase (ATCase; c6r6) upon challenge by p-hydroxymercuriphenylsulfonate (PMPS) has been studied using the sensitive, high-affinity metallochromic indicator 4-(2-pyridylazo)resorcinol at pH 7.0. When the--SH group of each catalytic (c) chain is protected, 1 Zn2+ is released for every 4 eq of PMPS added to ATCase during titration of the 24--SH groups of regulatory (r) chains. Moreover, the release of Zn2+ is a linear function of PMPS added, indicating that the rate-limiting step in Zn2+ release is mercurial attack on the 1st of the 4 r--SH groups bonded tetrahedrally to Zn2+ in an r chain near c:r contacts. Dissociation of ATCase is linked to Zn2+ release and mercaptide formation; e.g. upon addition of 4 eq of PMPS to ATCase in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) buffer, 1/6th of ATCase is dissociated to c3 and r2 subunits at approximately 83% of the rate of Zn2+ release, with no accumulation of the c6r4 intermediate as is observed in KPO4 buffer. Adding less than or equal to 4 PMPS/ATCase, the release of Zn2+ is first-order in [PMPS] and is virtually independent of [ATCase] with an activation energy of 18 kcal/mol. With large excesses of PMPS, stopped-flow traces show a lag period followed by pseudo first-order release of Zn2+ from ATCase and the reaction order in [PMPS] = approximately 1.3. Under these conditions, PMPS has a chaotropic effect on ATCase; the activation energy for Zn2+ release is much lower than that obtained with limiting PMPS and is increased by the presence of phosphate or active-site ligand from 6.6 to approximately 12 kcal/mol. A reasonable explanation of the observed kinetic data is that the organomercurial reagent binds reversibly to nitrogenous side chain groups in an ATCase molecule prior to the rate-limiting reaction with a sulfhydryl group.  相似文献   

7.
Two active mutants of aspartate transcarbamoylase from Escherichia coli have been purified from strains which produce large quantities of enzyme. Each enzyme was isolated from a different spontaneous revertant of a pyrimidine auxotrophic strain produced by mutagenesis with nitrogen mustard. Both enzymes exhibit allosteric properties with one having significantly less and the other more cooperativity than wild-type enzyme. Isolated catalytic subunits had different values of Km and Vmax. Studies on hybrids constructed from mutant catalytic and wild-type regulatory subunits (and vice versa) indicate that catalytic chains encoded by pyrB and not the regulatory chains encoded by pyrI were affected by the mutations. Differential scanning calorimetry experiments support these conclusions. Both mutant enzymes undergo ligand-promoted conformational changes analogous to those exhibited by wild-type enzyme: a 3% decrease in the sedimentation coefficient and a 5-fold increase in the reactivity of the sulfhydryl groups of the regulatory chains. Interactions between catalytic and regulatory chains in the mutants are weaker than those in the wild-type enzyme. The gross conformational changes of the mutants upon adding the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate, in the presence of the substrate, carbamoylphosphate, and the activator, ATP, correlate with differences in cooperativity. The mutant with lower cooperativity is more readily converted from the low-affinity, compact, T-state to the high-affinity, swollen, R-state than is wild-type enzyme; this conversion for the more cooperative enzyme is energetically less favorable.  相似文献   

8.
New systematic methods developed for equilibrium isotope exchange kinetics have been used to analyze the effects of activator ATP and inhibitor CTP with Escherichia coli aspartate transcarbamoylase. This indepth approach requires (a) variation of [modifier] with fixed subsaturating levels of substrates, and (b) variation of at least three combinations of reactant-product pairs in constant ratio at equilibrium: [A,B,P,Q], [A,P], and [B,Q] with the co-substrates held constant, in the presence and absence of added modifier. Both ATP and CTP had much stronger effects on the [14C]Asp in equilibrium C-Asp exchange rate than on [32P]C-P in equilibrium Pi. The bisubstrate analog N-phosphonacetyl-L-aspartate activated, then inhibited, Asp in equilibrium C-Asp more strongly than C-P in equilibrium Pi. N-Phosphonacetyl-L-aspartate gave complete (100%) inhibition, whereas CTP inhibition of either exchange was only partial. Substrate saturation curves in the presence and absence of effectors indicate that ATP and CTP perturb the observed values of Rmax and S0.5 in different fashions without appreciably changing the observed Hill number. Computer simulations indicate that the primary site of ATP and CTP action is the association rate for Asp, not the allosteric T-R transition. This finding is substantiated by previous studies in which modified aspartate transcarbamoylase had lost cooperative Asp binding without loss of sensitivity to effectors, or in which sensitivity to one effector could be deleted selectively. The present results, with newly devised computer simulation and analysis methods, illustrate the usefulness of equilibrium isotope exchange kinetic probes for providing unique insights to enzyme regulatory mechanisms, to define exactly which steps are altered in a given kinetic mechanism.  相似文献   

9.
The active site of aspartate transcarbamoylase from Escherichia coli was probed by studying the inhibitory effects of substrate analogues on the catalytic subunit of the enzyme. The inhibitors were chosen to satisfy the structural requirements for binding to either the phosphate or the dicarboxylate region. In addition, they also contained a side chain that would extend into the normal position occupied by the carbamoyl group. All the compounds tested showed competitive inhibition against carbamoyl phosphate. The ionic character of the side chain was found to be highly important in determining the affinity of the inhibitor. On the other hand, very little effect on binding was produced by changing the geometry of the functional group from trigonal to tetrahedral. Our findings suggest that the electrostatic stabilization of the negative charge that develops in the transition state may be a major factor in promoting catalysis. From the available X-ray diffraction data, we propose His-134 as the residue most likely to participate in this interaction. These results have significant implications on the design of reversible and irreversible inhibitors to this enzyme.  相似文献   

10.
The thermal denaturation of the catalytic (c3) and regulatory (r2) subunits of Escherichia coli aspartate transcarbamoylase (c6r6) in the absence and presence of various ligands has been studied by means of highly sensitive differential scanning calorimetry. The denaturation of both types of subunit is irreversible as judged by the facts that the proteins coagulate when heated and that no endotherm is observed when previously scanned protein is rescanned. Despite this apparent irreversibility, there is empirical justification for analyzing the calorimetric data in terms of equilibrium thermodynamics as embodied in the van't Hoff equation. The observed curves of excess apparent specific heat vs. temperature are asymmetric and can be expressed within experimental uncertainty as the sums of sequential two-state steps, a minimum of two steps being required for r2 and three for c3. As previously reported [Vickers, K. P., Donovan, J. W., & Schachman, H. K. (1978) J. Biol. Chem. 253, 8493-8498], the addition of the effectors ATP and CTP raises the denaturation temperature of r2 and lowers that of c3 while the addition of the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate raises the denaturation temperature of c3 and lowers that of r2. These effects vary with ligand concentration in the manner expected from the van't Hoff equation, indicating that they are simply manifestations of Le Chatelier's principle rather than being due to "stabilization" or "destabilization" of the proteins. The denaturational enthalpy is increased in those cases of ligand binding in which the denaturation temperature is increased, because of the contribution from the enthalpy of dissociation of the ligand.  相似文献   

11.
Heng S  Stieglitz KA  Eldo J  Xia J  Cardia JP  Kantrowitz ER 《Biochemistry》2006,45(33):10062-10071
Escherichia coli aspartate transcarbamoylase (ATCase) catalyzes the committed step in pyrimidine nucleotide biosynthesis, the reaction between carbamoyl phosphate (CP) and l-aspartate to form N-carbamoyl-l-aspartate and inorganic phosphate. The enzyme exhibits homotropic cooperativity and is allosterically regulated. Upon binding l-aspartate in the presence of a saturating concentration of CP, the enzyme is converted from the low-activity low-affinity T state to the high-activity high-affinity R state. The potent inhibitor N-phosphonacetyl-l-aspartate (PALA), which combines the binding features of Asp and CP into one molecule, has been shown to induce the allosteric transition to the R state. In the presence of only CP, the enzyme is the T structure with the active site primed for the binding of aspartate. In a structure of the enzyme-CP complex (T(CP)), two CP molecules were observed in the active site approximately 7A apart, one with high occupancy and one with low occupancy. The high occupancy site corresponds to the position for CP observed in the structure of the enzyme with CP and the aspartate analogue succinate bound. The position of the second CP is in a unique site and does not overlap with the aspartate binding site. As a means to generate a new class of inhibitors for ATCase, the domain-open T state of the enzyme was targeted. We designed, synthesized, and characterized three inhibitors that were composed of two phosphonacetamide groups linked together. These two phosphonacetamide groups mimic the positions of the two CP molecules in the T(CP) structure. X-ray crystal structures of ATCase-inhibitor complexes revealed that each of these inhibitors bind to the T state of the enzyme and occupy the active site area. As opposed to the binding of Asp in the presence of CP or PALA, these inhibitors are unable to initiate the global T to R conformational change. Although the best of these T-state inhibitors only has a K(i) value in the micromolar range, the structural information with respect to their mode of binding provides important information for the design of second generation inhibitors that will have even higher affinity for the active site of the T state of the enzyme.  相似文献   

12.
Here the functional and structural importance of interactions involving the 240s loop of the catalytic chain for the stabilization of the T state of aspartate transcarbamoylase were tested by replacement of Lys-244 with Asn and Ala. For the K244A and K244N mutant enzymes, the aspartate concentration required to achieve half-maximal specific activity was reduced to 8.4 and 4.0 mm, respectively, as compared with 12.4 mM for the wild-type enzyme. Both mutant enzymes exhibited dramatic reductions in homotropic cooperativity and the ability of the heterotropic effectors to modulate activity. Small angle x-ray scattering studies showed that the unligated structure of the mutant enzymes, and the structure of the mutant enzymes ligated with N-phosphonacetyl-L-aspartate, were similar to that observed for the unligated and N-phosphonacetyl-L-aspartateligated wild-type enzyme. A saturating concentration of carbamoyl phosphate alone has little influence on the small angle x-ray scattering of the wild-type enzyme. However, carbamoyl phosphate was able to shift the structure of the two mutant enzymes dramatically toward R, establishing that the mutations had destabilized the T state of the enzyme. The x-ray crystal structure of K244N enzyme showed that numerous local T state stabilizing interactions involving 240s loop residues were lost. Furthermore, the structure established that the mutation induced additional alterations at the subunit interfaces, the active site, the relative position of the domains of the catalytic chains, and the allosteric domain of the regulatory chains. Most of these changes reflect motions toward the R state structure. However, the K244N mutation alone only changes local conformations of the enzyme to an R-like structure, without triggering the quaternary structural transition. These results suggest that loss of cooperativity and reduction in heterotropic effects is due to the dramatic destabilization of the T state of the enzyme by this mutation in the 240s loop of the catalytic chain.  相似文献   

13.
The mechanism of subunit assembly of aspartate transcarbamoylase from Escherichia coli was studied by following the kinetics of reassociation. The isolated trimetric catalytic subunit (c3) and dimeric regulatory subunit (r2) were mixed together and formation of the dodecameric native enzyme (c6r6) was monitored by measuring changes in activity. Under appropriate conditions the reassociation was second order with respect to the c3 concentration and the effects of varying r2 concentration on the second-order rate constant were examined. An optimum R2 concentration of about 0.07 micrometer was observed. A scheme of the assembly pathways is proposed and is based on the reversible formation of c3r2n (n = 0, 1, 2 or 3) as intermediates. Various combinations of two such c3r2n species are considered as possible rate-limiting steps. This model yields an expression which relates the experimentally determined (overall) second-order rate constant to the equilibrium constant (Kd) governing the formation of c3r2n, the r2 concentration, and four coefficients which reflect the contribution of different types of assembly processes. Using previously determined values of Kd, the above expression for each r2 concentration reduces to a linear equation with four unknowns. The experimental data were subjected to multiple linear-regression analysis and values for the four coefficients were found which gave an excellent fit. Our results show that reassociation of the subunits is a fast bimolecular reaction with rate constants in excess of 10(6) M-1 s-1. Our analysis also suggests that interactions involving a total of more than three r2 subunits (e.g. the combination of c3r2 with c3r6) might contribute significantly to the overall assembly. The influence of various ligands on the reassociation rate profile was also studied. All ligands examined were partially inhibitory to the formation of native enzyme. The effects of substrates were similar to those of CTP whereas the effects of ATP were substantially different. These observations can be readily interpreted by postulating different conformational changes induced by the ligands. These changes should alter the relative orientation of the subunit contacts which must be formed in the reassociation process. The interpretation is consistent with our previous model of the allosteric mechanism.  相似文献   

14.
The effector binding site of Escherichia coli aspartate transcarbamoylase, composed of the triphosphate and ribose-base subsites, is located on the regulatory (r) chains of the enzyme. In order to probe the function of amino acid side chains at this nucleotide triphosphate site, site-specific mutagenesis was used to create three mutant versions of the enzyme. On the basis of the three-dimensional structure of the enzyme with CTP bound, three residues were selected. Specifically, Arg-96r was replaced with Gln, and His-20r and Tyr-89r were both replaced with Ala. Analyses of these mutant enzymes indicate that none of these substitutions significantly alter the catalytic properties of the enzyme. However, the mutations at His-20r and Tyr-89r produced altered response to the regulatory nucleotides. For the His-20r----Ala enzyme, the affinities of the enzyme for ATP and CTP are reduced 40-fold and 10-fold, respectively, when compared with the wild-type enzyme. Furthermore, CTP is able to inhibit the His-20r----Ala enzyme 40% more than the wild-type enzyme. In the case of the Tyr-89r----Ala enzyme. ATP can increase the mutant enzyme's activity 181% compared to 157% for the wild-type enzyme, while simultaneously the affinity of this enzyme for ATP decreases about 70%. These results suggest that Tyr-89r does have an indirect role in the discrimination between ATP and CTP. The His-20r----Ala enzyme shows no UTP synergistic inhibition in the presence of CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A new system has been developed capable of monitoring conformational changes of the 240s loop of aspartate transcarbamoylase, which are tightly correlated with the quaternary structural transition, with high sensitivity in solution. Pyrene, a fluorescent probe, was conjugated to residue 241 in the 240s loop of aspartate transcarbamoylase to monitor changes in conformation by fluorescence spectroscopy. Pyrene maleimide was conjugated to a cysteine residue on the 240s loop of a previously constructed double catalytic chain mutant version of the enzyme, C47A/A241C. The pyrene-labeled enzyme undergoes the normal T to R structural transition, as demonstrated by small-angle x-ray scattering. Like the wild-type enzyme, the pyrene-labeled enzyme exhibits cooperativity toward aspartate, and is activated by ATP and inhibited by CTP at subsaturating concentrations of aspartate. The binding of the bisubstrate analogue N-(phosphonoacetyl)-l-aspartate (PALA), or the aspartate analogue succinate, in the presence of saturating carbamoyl phosphate, to the pyrenelabeled enzyme caused a sigmoidal change in the fluorescence emission. Saturation with ATP and CTP (in the presence of either subsaturating amounts of PALA or succinate and carbamoyl phosphate) caused a hyperbolic increase and decrease, respectively, in the fluorescence emission. The half-saturation values from the fluorescence saturation curves and kinetic saturation curves were, within error, identical. Fluorescence and small-angle x-ray scattering stopped-flow experiments, using aspartate and carbamoyl phosphate, confirm that the change in excimer fluorescence and the quaternary structure change correlate. These results in conjunction with previous studies suggest that the allosteric transition involves both global and local conformational changes and that the heterotropic effect of the nucleotides may be exerted through local conformational changes in the active site by directly influencing the conformation of the 240s loop.  相似文献   

16.
Regulation of protein function, often achieved by allosteric mechanisms, is central to normal physiology and cellular processes. Although numerous models have been proposed to account for the cooperative binding of ligands to allosteric proteins and enzymes, direct structural support has been lacking. Here, we used a combination of X-ray crystallography and small angle X-ray scattering in solution to provide direct structural evidence that the binding of ligand to just one of the six active sites of Escherichia coli aspartate transcarbamoylase induces a concerted structural transition from the T to the R state.  相似文献   

17.
Aspartate transcarbamoylase from Escherichia coli has become a model system for the study of both homotropic and heterotropic interactions in proteins. Analysis of the X-ray structures of the enzyme in the absence and presence of substrates and substrate analogs has revealed sets of interactions that appear to stabilize either the 'T' or the 'R' states of the enzyme. Site-specific mutagenesis has been used to test which of these interactions are functionally important. By combining the structural data from X-ray crystallography, and the functional data from site-specific mutagenesis a model is proposed for homotropic cooperativity in aspartate transcarbamoylase that suggests that the allosteric transition occurs in a concerted fashion.  相似文献   

18.
The thermal denaturation of Escherichia coli aspartate transcarbamoylase (c6r6) in the absence and presence of various ligands has been studied by means of high-sensitivity differential scanning calorimetry (DSC). As previously reported [Vickers, K.P., Donovan, J.W., & Schachman, H.K. (1978) J. Biol. Chem. 253, 8493-8498], the denaturational endotherm consists of two peaks, the lower of which is due to denaturation of the three regulatory, r2, subunits while the upper involves the two catalytic, c3, subunits. The temperature of maximal excess apparent specific heat, tm, of the lower peak is raised from the value of 51.4 degrees C for the isolated subunit to 66.8 degrees C as a result of subunit interactions, whereas tm for the c3 peak is essentially the same in the isolated subunit and in the holoenzyme, indicating that the denatured r2 subunits do not interact with the c3 subunits. The total specific denaturational enthalpy for c6r6, 4.83 +/- 0.16 cal g-1, is significantly larger than the weighted mean, 4.08 cal g-1, of the enthalpies for c3 and r2. The fact that no endotherm is observed when previously scanned protein is rescanned indicates that the denaturation is irreversible, as is also the case with the r2 and c3 subunits. Empirical justification for analyzing the data in terms of equilibrium thermodynamics is cited. The observed DSC curves can be expressed within experimental uncertainty as the sum of five sequential two-state steps. The value of t 1/2, the temperature of half-completion, for each step increases with increasing protein concentration, indicating that some dissociation of the protein takes place during denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 A away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.  相似文献   

20.
Two hybrid versions of Escherichia coli aspartate transcarbamoylase were studied to determine the influence of domain closure on the homotropic and heterotropic properties of the enzyme. Each hybrid holoenzyme had one wild-type and one inactive catalytic subunit. In the first case the inactive catalytic subunit had Arg-54 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 17,000-fold reduction in activity, no loss in substrate affinity, and an R state structurally identical to that of the wild-type enzyme. In the second case, the inactive catalytic subunit had Arg-105 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 1,100-fold reduction in activity, substantial loss in substrate affinity, and loss of the ability to be converted to the R state. Thus, the R54A substitution results in a holoenzyme that can undergo closure of the catalytic chain domains to form the high activity, high affinity active site and to undergo the allosteric transition, whereas the R105A substitution results in a holoenzyme that can neither undergo domain closure nor the allosteric transition. The hybrid holoenzyme with one wild-type and one R54A catalytic subunit exhibited the same maximal velocity per active site as the wild-type holoenzyme, reduced cooperativity, and normal heterotropic interactions. The hybrid with one wild-type and one R105A catalytic subunit exhibited significantly reduced maximal velocity per active site as compared with the wild-type holoenzyme, reduced cooperativity, and substantially reduced heterotropic interactions. Small angle x-ray scattered was used to verify that the R105A-containing hybrid could attain an R state structure. These results indicate the global nature of the conformational changes associated with the allosteric transition in the enzyme. If one catalytic subunit cannot undergo domain closure to create the active sites, then the entire molecule cannot attain the high activity, high activity R state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号