首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this research were to isolate pure phenol-degrading strains from enriched mixed cultures, monitoring the variations of species during the enrichment period. Two strains were isolated from the acclimated mixed culture. They were identified as Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. DGGE indicated that strain P. resinovorans appeared at the beginning, and maintained well during the enrichment period. The second strain, Brevibacillus sp., did not appear in the initial stage, but showed up after 2 weeks of enrichment. The optimum growth temperatures for P. resinovorans and Brevibacillus sp. were 31 and 39 °C, respectively. P. resinovorans could degrade phenol completely within 57.5 h, when the initial phenol concentration was lower than 600 mg l−1. If the initial phenol concentration was lower than 200 mg l−1, Brevibacillus sp. could remove phenol completely within 93.1 h. It was obvious that the phenol-degrading ability of P. resinovorans was much better than that of Brevibacillus sp. The metabolic pathway for P. resinovorans phenol degradation was assigned to the meta-cleavage activity of catechol 2,3-dioxygenase.  相似文献   

2.
A bacterial strain, CK3, with remarkable ability to decolorize the reactive textile dye Reactive Red 180, was isolated from the activated sludge collected from a textile mill. Phenotypic characterization and phylogenetic analysis of the 16S rDNA sequence indicated that the bacterial strain belonged to the genus Citrobacter. Bacterial isolate CK3 showed a strong ability to decolorize various reactive textile dyes, including both azo and anthraquinone dyes. Anaerobic conditions with 4 g l?1 glucose, pH = 7.0 and 32 °C were considered to be the optimum decolorizing conditions. Citrobacter sp. CK3 grew well in a high concentration of dye (200 mg l?1), resulting in approximately 95% decolorization extent in 36 h, and could tolerate up to 1000 mg l?1 of dye. UV–vis analyses and colorless bacterial cells suggested that Citrobacter sp. CK3 exhibited decolorizing activity through biodegradation, rather than inactive surface adsorption. It is the first time that a bacterial strain of Citrobacter sp. has been reported with decolorizing ability against both azo and anthraquinone dyes. High decolorization extent and facile conditions show the potential for this bacterial strain to be used in the biological treatment of dyeing mill effluents.  相似文献   

3.
Buffered propionic acid (BPA) was evaluated as a potential treatment for the elimination of Salmonella spp. in poultry mash. A primary poultry isolate marker strain of Salmonella typhimurium was added as either a broth or in a dry chalk carrier form to poultry mash containing soybean meal as a protein supplement. The mash was supplemented with buffered propionic acid at 2, 4, 6, 8, 10, 20, 30, 50 and 100 g kg−1 diet and samples were enumerated for indigenous aerobic bacteria, fungi and the S. typhimurium marker strain. Total indigenous aerobic bacteria and fungal populations were generally decreased by addition of more than 20 g BPA kg−1, but an addition of 100 g BPA kg−1 mash was usually required to achieve reductions of approximately 90% of indigenous aerobic bacteria and 99% of indigenous fungi. After 7 days of storage, 8 g BPA kg−1 mash also reduced S. typhimurium populations by more than 90% in mash inoculated via chalk, while at least 50 g BPA kg−1 mash was required to provide the same level of reduction in mash inoculated with a liquid culture of S. typhimurium. Although BPA does not appear to be an overly effective antimicrobial agent with respect to indigenous aerobic bacterial populations in animal feed, higher concentrations may have the potential for reducing fungal and Salmonella spp. contamination in poultry mash.  相似文献   

4.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

5.
Antagonistic microbes were isolated from soils to control mycotoxin contamination of cereals by limiting the growth of mycotoxigenic Fusarium species. In total, 341 bacterial isolates were examined for antifungal activity against eight mycotoxigenic Fusarium species using dual culture assays. The screening identified 11 isolates that inhibited mycelial growth of all Fusarium species tested. The culture filtrates of 2 of the 11 isolates completely inhibited germination of conidia up to 21 days of incubation. These two isolates exhibited identical activity toward the fungi tested and were identified as Brevibacillus spp. based on 16S rRNA sequence homology. The most closely related species based on phylogenetic analysis was Brevibacillus reuszeri. Additional dual culturing using further fungal species showed that the antagonistic Brevibacillus inhibited the growth of most Fusarium species tested (39 of 46 species), two Epicoccum spp., one Alternaria sp., three Aspergillus spp. (3 of 11), and three Penicillium spp. (3 of 8). The in vivo assay was performed to test the efficacy of antagonistic Brevibacillus isolates on maize ears and revealed that the application of microbes suppressed ear rot (ANOVA, p = 0.0020). This Brevibacillus sp. may be an antagonist of the majority of Fusarium species, including mycotoxigenic species.  相似文献   

6.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

7.
The performance of up-flow anaerobic sludge blanket (UASB) in combination with down-flow hanging sponge (DHS) system for sewage treatment at an average wastewater temperature of 15 °C has been investigated for 6 months. The results showed that a combined system operated at a total HRT of 10.7 h and total SRT of 88 days represents a cost effective sewage treatment process. The average CODtotal and BOD5 total concentrations measured in the final effluent of the total system (UASB + DHS) amounted to 43 and 3.0 mg/l, respectively, corresponding to the overall removal efficiency of 90% for CODtotal and 98% for BOD5 total. The total process provided a final effluent containing a low concentration of 12 mg/l for TSS.Eighty-six percent of ammonia was eliminated at space loading rate of 1.6 kg COD/m3 d and HRT of 2.7 h. The calculated nitrification rate of the DHS system according to the nitrate and nitrite production amounted to 0.18 kg/m3 d. The removal of F. coliform in the UASB reactor only amounted to 0.86 log10. On the other hand, the F. coliform concentration dropped substantially, i.e. by 2.6 log10 in the DHS system resulting only 2.7 × 103/100 ml in the final effluent.The calculated average sludge production for UASB operated at an HRT of 8.0 h amounted to 30 g TSS/d, corresponding to sludge yield coefficient of 0.2 g TSS/g total COD removed, while it was indeed very low only 6.0 g TSS/d corresponding to sludge yield coefficient of 0.09 g TSS/g total COD removed, for DHS system.The DHS profile results revealed that in the first and second segment of DHS system, the CODtotal, BOD5 total and TSS was eliminated, followed by the oxidation of ammonia in the next segments.  相似文献   

8.
Five actinomycete strains isolated from pesticide-contaminated sediments were able to grow in the presence of 10 μg l−1 lindane, an organochlorine pesticide. The strain growing best in the presence of lindane as the only carbon source was identified as Streptomyces sp. M7. After 96 h of incubation in synthetic medium containing lindane and glucose, both substrates were simultaneously consumed; glucose 6.0 g l−1 improved lindane degradation and obtained biomass. When Streptomyces sp. M7 was cultured in presence of lindane plus glucose, the disappearance of the pesticide from the medium and the lindane degradation was observed after 72 h of incubation. This is the first report of lindane degradation without intracellular accumulation or biotransformation products of lindane using Streptomyces sp. under aerobic conditions.Relevance to industryThis is the first report of lindane removal without intracellular accumulation or biotransformation products of lindane using Streptomyces sp. strain M7, an actinomycete isolated from pesticide-contaminated sediments from Tucuman, Argentina.  相似文献   

9.
Aerobic granular sludge was cultivated in a glass sequencing batch reactor (SBR) with glucose synthetic wastewater. The spherical shaped granules were observed on 4th day with the mean diameter of 0.1 mm. With the increase of chemical oxygen demand (COD) concentration of the influent, aerobic granules grew matured, the size of which ranged from 1.2 to 1.9 mm. The aerobic granular sludge could sustain high organic loading rate (about 4.0 g COD L−1 d−1), with good settling ability (settling velocity 36 m/h) and high biomass concentration (MLSS 6.7 ±0.2 g/L). Experimental data indicated that the substrate utilization and biomass growth kinetics followed Monod's kinetics model approximately. The corresponding kinetic coefficients of maximum specific substrate utilization rate (k), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 13.2 d−1, 275.8 mg/L, 0.183–0.250 mg MLSS/mg COD and 0.023–0.075 d−1, respectively, which made aerobic granules have short setup period, high rate of substrate utilization and little surplus sludge.  相似文献   

10.
The solubilization and acidification of waste activated sludge (WAS) were apparently enhanced by external rhamnolipid (RL) addition. The maximum solute carbohydrate concentrations increased linearly from 48 ± 5 mg COD L−1 in the un-pretreated WAS (blank) to 566 ± 19 mg COD L−1, and protein increased from 1050 ± 8 to 3493 ± 16 mg COD L−1 at RL dosage of 0.10 g g−1 TSS. The highest VFAs concentration peaked at 3840 mg COD L−1 at RL dosage of 0.04 g g−1 TSS, which was 4.24-fold higher than the blank test. RL was generated in situ during WAS fermentation when external RL was added. It was detected that RL concentration was increased from initial 880 ± 92 mg L−1 to 1312 ± 7 mg L−1 at the end of 96 h with RL dosage of 0.04 g g−1 TSS, which was increased to 1.49-fold. Meanwhile, methane production was notably reduced to a quite low level of 2.0 mL CH4 g−1 VSS, showing effective inhibition of methanogens by RL (58.8 mL CH4 g−1 VSS in the blank). In addition, the activity of hydrolytic enzymes (protease and α-glucosidase) was enhanced accordingly. VFAs accumulation and RL generation in situ demonstrated that the additional RL substantially performed enhanced biological effects for waste activated sludge fermentation.  相似文献   

11.
Among the various bacterial isolates, the strain MSF 46 isolated from thorn forest soil samples, Tamil Nadu, India, was screened and characterized for its proteolytic activity. While the 16S rRNA sequencing and biochemical characterization revealed that the strain closely resembles Methylobacterium sp., methylotrophy of the strain was confirmed by the sequence homology of mxaF gene with other relative Methylobacterium sp. The alkaline protease was purified to homogeneity using DEAE cellulose ion exchange chromatography, with a 5.2-fold increase in specific activity and 34% recovery. The apparent molecular weight of the enzyme was determined as 40 kDa by SDS–PAGE study. The pH and temperature optima were 9.0 and 50 °C respectively with maximum protease activity of 1164 U/ml. Protease of MSF 46 was active in a broad pH range 7.0–11.0 with a maximum at pH 8.5 and exhibited thermostability at 50 °C. The enzyme activity was inhibited by PMSF but showed stability with Tween 20, Triton X-100 and hydrogen peroxide. Nearly 30% reduction in enzyme activity was observed in the presence of EDTA and DTT. The enzyme was effective in hydrolyzing gelatin, skimmed milk and blood clots and exhibited the potency for dehairing of goat skin and removing blood stain from cotton fabric. Significant morphological changes were observed under scanning electron microscope between cells grown in normal and casein amended medium. This first detailed report on the production of alkaline protease by a PPFM strain appears promising toward development of protocols for mass production, study of the molecular mechanism and other applications.  相似文献   

12.
The properties and behaviour of solids retained in a pilot plant constituted of an up-flow anaerobic sludge blanket (UASB) reactor and two constructed wetlands (CWs) were monitored over a 3-year period. The UASB (25.5 m3) was fed with raw municipal wastewater at a flow rate of 61–112 m3 d?1 and a volumetric loading rate (VLR) of 0.75–1.70 kg TCOD m?3 d?1. The CWs (75 m2 each) were operated in series and received a fraction (17–20 m3 d?1) of the UASB effluent. The applied surface loading rates (SLR) were in the range of 3800–8700 g TCOD m?2 d?1 (UASB) and 11–15 g BOD5 m?2 d?1 (CWs). The overall system removed 95% TSS, 85% TCOD and 87% BOD5 on average. For influent VSS, the UASB removed 72.1% and gave a hydrolysis of 63.5%, while the average surplus sludge generation was 8.7%. Over the 3-year period, TSS and VSS accumulated in the CWs at rates of 1.07 and 0.56 kg m?2 year?1, respectively. The aerobic biodegradability of the accumulated solids ranged from 23 to 92 mg O2 g VSS?1 d?1 and increased downstream in the CWs. About 59% of the VSS that entered the CWs was removed by hydrolysis, while 24% accumulated on granular media. These low solids accumulation rates were especially remarkable considering the high COD and BOD5 loading rates applied. The system lay-out appear to be promising in terms of preventing clogging.  相似文献   

13.
Isolations from oak symptomatic of Acute Oak Decline, alder and walnut log tissue, and buprestid beetles in 2009–2012 yielded 32 Gram-negative bacterial strains showing highest gyrB sequence similarity to Rahnella aquatilis and Ewingella americana. Multilocus sequence analysis (using partial gyrB, rpoB, infB and atpD gene sequences) delineated the strains into six MLSA groups. Two MLSA groups contained reference strains of Rahnella genomospecies 2 and 3, three groups clustered within the Rahnella clade with no known type or reference strains and the last group contained the type strain of E. americana. DNA–DNA relatedness assays using both the microplate and fluorometric methods, confirmed that each of the five Rahnella MLSA groups formed separate taxa. Rahnella genomospecies 2 and 3 were previously not formally described due to a lack of distinguishing phenotypic characteristics. In the present study, all five Rahnella MLSA groups were phenotypically differentiated from each other and from R. aquatilis. Therefore we propose to classify the strains from symptomatic oak, alder and walnut and buprestid beetles as: Rahnella victoriana sp. nov. (type strain FRB 225T = LMG 27717T = DSM 27397T), Rahnella variigena sp. nov. (previously Rahnella genomosp. 2, type strain CIP 105588T = LMG 27711T), Rahnella inusitata sp. nov. (previously Rahnella genomosp. 3, type strain DSM 30078T = LMG 2640T), Rahnella bruchi sp. nov. (type strain FRB 226T = LMG 27718T = DSM 27398T) and Rahnella woolbedingensis sp. nov. (type strain FRB 227T = LMG 27719T = DSM 27399T).  相似文献   

14.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

15.
Streptomyces sp. Z2 was isolated from nitrobenzene contaminated activated sludge, which utilized nitrobenzene as a sole source of carbon, nitrogen, and energy under aerobic condition. It was found that besides nitrobenzene strain Z2 can degrade 2-picolinic acid. Strain Z2 completely degraded 2-picolinic acid with initial concentration of 500 mg/L, 1000 mg/L, 1500 mg/L, 2000 mg/L, 2500 mg/L, and 3000 mg/L within 36 h, 50 h, 72 h, 100 h, 136 h, and 180 h, respectively. Kinetics of 2-picolinic acid degradation was described using the Andrews equation. The kinetic parameters were as follows: qmax = 3.81 h?1, Ks = 83.10 mg/L, and Ki = 252.11 mg/L. During the biodegradation process, Z2 transformed 2-picolinic acid into a product which was identified as 6-hydroxy picolinic acid by UV–vis spectrometry, 1H nuclear magnetic resonance spectroscopy, and mass spectrometry. 6-Hydroxy picolinic acid was then cleaved and mineralized with release of ammonia.  相似文献   

16.
Anaerobic digestion is widely used in bioenergy recovery from waste. In this study, a half-submerged, integrated, two-phase anaerobic reactor consisting of a top roller acting as an acidogenic unit and a recycling bottom reactor acting as a methanogenic unit was developed for the codigestion of wheat straw (WS) and fruit/vegetable waste (FVW). The reactor was operated for 21 batches (nearly 300 d). Anaerobic granular sludge was inoculated into the methanogenic unit. The residence time for the mixed waste was maintained as 10 d when the operation stabilized, and the temperature was kept at 35 °C. The highest organic loading rate was 1.37 kg VS/(m3 d), and the maximum daily biogas production was 328 L/d. Volatile solid removal efficiencies exceeded 85%. WS digestion could be confirmed, and efficiency was affected by both the ratio of WS to FVW and the loading rate. The dominant bacteria were Bacteroides-like species, which are involved in glycan and cellulose decomposition. Methanogenic community structures, pH levels, and volatile fatty acid concentrations in the acidogenic and methanogenic units differed, indicating successful phase separation. This novel reactor can improve the mass transfer and microbial cooperation between acidogenic and methanogenic units and can efficiently and steady codigest solid waste.  相似文献   

17.
A novel moderately thermophilic, heterotrophic anaerobe, designated strain LG1T, was isolated from the Mariner deep-sea hydrothermal vent field along the Eastern Lau Spreading Center and Valu Fa Ridge. Cells of strain LG1T were motile rods, occurring singly or in pairs, 0.6 μm in width and 1.2 μm in length. The strain LG1T grew between 40 and 70 °C (optimum 50–55 °C), at a pH between 5 and 8 (optimum pH 6.5) and with 7.5–50 g L−1 NaCl (optimum 30 g L−1). Sulfur, cystine and thiosulfate were reduced to sulfide, and cell yield was improved in the presence of cystine. Strain LG1T was an organotroph able to use a variety of organic compounds. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain LG1T was affiliated to the genus Marinitoga within the order Petrotogales. It shared 95.34–96.31% 16S rRNA gene sequence similarity with strains of other Marinitoga species, and is most closely related to Marinitoga okinawensis. Genome analysis revealed the presence of a prophage sharing high sequence homology with the viruses MPV1, MCV1 and MCV2 hosted by Marinitoga strains. Based on the data from the phylogenetic analyses and the physiological properties of the novel isolate, we propose that strain LG1T is a representative of a novel species, for which the name Marinitoga lauensis sp. nov. is proposed; the type strain is LG1T (=DSM 106824 = JCM 32613).  相似文献   

18.
Thermophilic xylanases are of great interest for their wide industrial application prospects. Here we identified a thermophilic xylanase (XynC01) of glycoside hydrolase (GH) family 10 in a thermophilic fungal strain Achaetomium sp. Xz-8. The deduced amino acids of XynC01 showed the highest identity of ≤52% to experimentally verified xylanases. XynC01 was functionally expressed in Pichia pastoris, showed optimal activity at pH 5.5 and 75 °C with stability over a broad pH range (pH 4.0–10.0) and at temperatures of 55 °C and below. XynC01 had the highest catalytic efficiency (kcat/Km, 3710 mL/s/mg) ever reported for all GH 10 xylanases, and was resistant to all tested metal ions and chemical reagents. Its hydrolysis products of various xylans were simple, mainly consisting of xylobiose and xylose. Under simulated mashing conditions, XynC01 alone had a comparable effect on filtration improvement with Ultraflo from Novozymes (20.24% vs. 20.71%), and showed better performance when combined with a commercial β-glucanase (38.50%). Combining all excellent properties described above, XynC01 may find diverse applications in industrial fields, especially in the brewing industry.  相似文献   

19.
《Process Biochemistry》2007,42(7):1069-1074
Crab shell (CS) waste samples (particle size 3–10 and 20–35 mm) were inoculated with the newly isolated Pseudomonas aeruginosa F722 to study the efficiency of microbial demineralization (DM) and deproteinization (DP) in the process of extracting chitin. The inoculated waste was incubated for 7 days at 25, 30 and 35 °C. Various concentrations of glucose were supplemented as carbon source. At the optimal temperature of 30 °C, DM was 92% and DP was 63% DP, whereas the pH dropped from initial pH 8.0 to 4.1. In comparative experiments with different amounts of CS waste, 5% CS waste treatment was shown to be the optimal amount for efficient DM. A positive relationship is correlated between DM and glucose concentration (r2 = 0.821), whereas a negative relationship is correlated between DM and pH (r2 = 0.793). DP and protease activity were little affected by different crab shell sizes.  相似文献   

20.
The ability to grow by anaerobic CO oxidation with production of H2 from water is known for some thermophilic bacteria, most of which belong to Firmicutes, as well as for a few hyperthermophilic Euryarchaeota isolated from deep-sea hydrothermal habitats. A hyperthermophilic, neutrophilic, anaerobic filamentous archaeon strain 1505 = VKM B-3180 = KCTC 15798 was isolated from a terrestrial hot spring in Kamchatka (Russia) in the presence of 30% CO in the gas phase. Strain 1505 could grow lithotrophically using carbon monoxide as the energy source with the production of hydrogen according to the equation CO + H2O  CO2 + H2; mixotrophically on CO plus glucose; and organotrophically on peptone, yeast extract, glucose, sucrose, or Avicel. The genome of strain 1505 was sequenced and assembled into a single chromosome. Based on 16S rRNA gene sequence analysis and in silico genome-genome hybridization, this organism was shown to be closely related to the Thermofilum adornatum species. In the genome of Thermofilum sp. strain 1505, a gene cluster (TCARB_0867-TCARB_0879) was found that included genes of anaerobic (Ni,Fe-containing) carbon monoxide dehydrogenase and genes of energy-converting hydrogenase ([Ni,Fe]-CODH–ECH gene cluster). Compared to the [Ni,Fe]-CODH–ECH gene clusters occurring in the sequenced genomes of other H2-producing carboxydotrophs, the [Ni,Fe]-CODH–ECH gene cluster of Thermofilum sp. strain 1505 presented a novel type of gene organization. The results of the study provided the first evidence of anaerobic CO oxidation coupled with H2 production performed by a crenarchaeon, as well as the first documented case of lithotrophic growth of a Thermofilaceae representative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号