首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New ligands for in vivo brain imaging of serotonin transporter (SERT) with single photon emission tomography (SPECT) were prepared and evaluated. An efficient synthesis and radiolabeling of a biphenylthiol, FLIP-IDAM, 4, was accomplished. The affinity of FLIP-IDAM was evaluated by an in vitro inhibitory binding assay using [125I]-IDAM as radioligand in rat brain tissue homogenates (Ki = 0.03 nM). New [125I]Flip-IDAM exhibited excellent binding affinity to SERT binding sites with a high hypothalamus to cerebellum ratio of 4 at 30 min post iv injection. The faster in vivo kinetics for brain uptake and a rapid washout from non-specific regions provide excellent signal to noise ratio. This new agent, when labeled with 123I, may be a useful imaging agent for mapping SERT binding sites in the human brain.  相似文献   

2.
A series of some novel 2,4-thiazolidinediones (TZDs) (2ax) have been synthesized and characterized by FTIR, 1H NMR, 13C NMR and LC mass spectral analysis. All the synthesized compounds were evaluated for their cytotoxicity, antimicrobial and in vivo antihyperglycemic activities. Among the tested compounds for cytotoxicity using Brine Shrimp Lethality assay, compound 2t ((Z)-5-(4-((E)-3-oxo-3-(thiophen-2-yl)prop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited significant inhibitory activity at ED50 value 4.00 ± 0.25 μg/mL and this level of activity was comparable to that of the reference drug podophyllotoxin with ED50 value 3.61 ± 0.17 μg/mL. Antimicrobial activity was screened using agar well diffusion assay method against selected Gram-positive, Gram-negative and fungal strains and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. From the results of antimicrobial activity compound 2s ((Z)-5-(4-((E)-3-(3,5-bis(benzyloxy)phenyl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) was found to be the most active against all the tested strains of microorganisms with MIC value 16 μg/mL. In vivo antihyperglycemic effect of twenty four TZDs (2ax) at different doses 10, 30 and 50 mg/kg b.w (oral) were assessed using percentage reduction of plasma glucose (PG) levels in streptozotocin-induced type II diabetic rat models. From the results, the novel compound 2x ((Z)-5-(4-((E)-3-(9H-fluoren-2-yl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited considerably potent blood glucose lowering activity than that of the standard drug rosiglitazone and it could be a remarkable starting point to evaluate structure–activity relationships and to develop new lead molecules with potential cytotoxicity, antimicrobial and antihyperglycemic activities. In addition molecular docking studies were carried out against PPARγ molecular target using Molegro Virtual Docker v 4.0 to accomplish preliminary confirmation of the observed in vivo antihyperglycemic activity.  相似文献   

3.
Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for terminating the signaling of endocannabinoids, including anandamide. This paper is the first report of the synthesis, [123I]-labeling and in vitro and in vivo evaluation of anandamide analogues as potential metabolic trapping radioligands for in vivo evaluation of brain FAAH. N-(2-Iodoethyl)linoleoylamide (2) and N-(2-iodoethyl)arachidonylamide (4) were synthesized with good yields (75% and 86%, respectively) in a two steps procedure starting from their respective acids. In vitro analyses, performed using recombinant rat FAAH and [3H]-anandamide, demonstrated interaction of 2 and 4 with FAAH (IC50 values of 5.78 μM and 3.14 μM, respectively). [123I]-2 and [123I]-4 were synthesized with radiochemical yields of 21% and 12%, respectively, and radiochemical purities were >90%. Biodistribution studies in mice demonstrated brain uptake for both tracers (maximum values of 1.23%ID/g at 3 min pi for [123I]-2 and 0.58%ID/g at 10 min pi for [123I]-4). However, stability studies demonstrated the sensitivity of both tracers to dehalogenation.  相似文献   

4.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

5.
In the present study, a series of new hybrid compounds containing chalcone and methanoisoindole units 7a-n ((3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione) were synthesized, characterized and investigated for their anticancer activity against C6 gliocarcinoma cell in rats, and antimicrobial activity against some human pathogen microorganisms. The compounds 7e, 7h, 7j, 7k, 7L and 7n showed very high anticancer activity with the inhibition range of 80.51–97.02% compared to 5-FU. Some of the compounds exhibited anti-microbial activity. Also, they evaluated for inhibition effects against human carbonic anhydrase I, and II isoenzymes (hCA I and II) with Ki values in the range of 405.26–635.68 pM for hCA I, and 245.40–489.60 pM for hCA II, respectively. These results demonstrated that 3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives could be used in different biomedical applications.  相似文献   

6.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

7.
In this study, the benzimidazole derivatives were synthesized and evaluated as imaging agents for the NR2B subtype of NMDA receptor. Among these ligands, 2-{[4-(4-iodobenzyl)piperidin-1-yl]methyl}benzimidazol-5-ol (8) and N-{2-[4-(4-iodobenzyl)-piperidin-1-ylmethyl]benzoimidazol-5-yl}-methanesulfonamide (9) exhibited high affinity for the NR2B subunit (Ki values; 7.28 nM for 8 and 5.75 nM for 9). In vitro autoradiography experiments demonstrated high accumulation in the forebrain regions but low in the cerebellum for both [125I]8 and [125I]9. These regional distributions of the radioligands correlated with the expression of the NR2B subunit. The in vitro binding of these ligands was inhibited by NR2B antagonist but not by other site ligands, which suggested the high selectivity of [125I]8 and [125I]9 for the NR2B subunit. In mice, the regional brain uptakes of [125I]8 and [125I]9 at 5–180 min after administration were 0.42–0.56% and 0.44–0.67% dose/g, respectively. The brain-to-blood ratio of [125I]8 at 180 min was reduced by 34% in the presence of non-radioactive ligands and by 59% in the presence of the NR2B ligand Ro-25,6981. These results indicated that [125I]8 could be partially bound to the NR2B subunit in vivo. Although the brain uptake of these benzimidazole derivatives was too low to allow for in vivo SPECT imaging, these compounds might be useful scaffolds for the development of imaging probes specific for the NMDA receptors.  相似文献   

8.
A novel series of 1-(2,4-dimethoxy-phenyl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)-propenone (3) have been prepared by the Claisen–Schmidt condensation of 1-(2,4-dimethoxy-phenyl)-ethanone (1) and substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehydes (2). Substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehydes (2) were prepared by Vilsmeir–Haack reaction on acetophenonephenylhydrazones to offer the target compounds. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. All the compounds were evaluated for their anti-inflammatory (TNF-α and IL-6 inhibitory assays), antioxidant (DPPH free radical scavenging assay) and antimicrobial activities (agar diffusion method) against some pathogenic bacteria and fungi. Of 10 compounds screened, compounds 3a, 3c and 3g exhibited promising IL-6 inhibitory (35–70% inhibition, 10 μM), free radical scavenging (25–35% DPPH activity) and antimicrobial activities (MIC 100 μg/mL and 250 μg/mL) at varied concentrations. The structure–activity relationship (SAR) and in silico drug relevant properties (HBD, HBA, PSA, c Log P, molecular weight, EHOMO and ELUMO) further confirmed that the compounds are potential lead compounds for future drug discovery study. Toxicity of the compounds was evaluated theoretically and experimentally and revealed to be nontoxic except 3d and 3j.  相似文献   

9.
Substituted-3-formylchromones (4ae) on reaction with 1,3-bis-dimethylaminomethylene-thiourea (5) in refluxing toluene solution give novel substituted 5-(o-hydroxyaroyl)pyrimidines (6ae) in high yields. A mechanistic rationalization of the formation of products (6ae) is proffered. Antimicrobial activities of all the synthesized compounds (6ae) were evaluated against various fungal and bacterial strains. Compound 6d display significant antifungal activity (MIC 15) against Geotrichum candidum in comparison fluconazole used as positive control. Some of the compounds also display good antibacterial activity. Cytotoxic profile of compound 6d against HeLa cells indicates that at concentration (20 μM) no significant cell death (~2%) was observed.  相似文献   

10.
A series of (R)-3-amino-1-((3aS,7aS)-octahydro-1H-indol-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one derivatives was designed, synthesized, and evaluated as novel inhibitors of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes. Most of the synthesized compounds demonstrated good inhibition activities against DPP-4. Among these, compounds 3e, 4c, 4l, and 4n exhibited prominent inhibition activities against DPP-4, with IC50s of 0.07, 0.07, 0.14, and 0.17 μM, respectively. The possible binding modes of compounds 3e and 4n with dipeptidyl peptidase-4 were also explored by molecular docking simulation. These potent DPP-4 inhibitors were optimized for the absorption, distribution, metabolism, and excretion (ADME) properties, and compound 4n displayed an attractive pharmacokinetic profile (F = 96.3%, t1/2 = 10.5 h).  相似文献   

11.
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[11C]methylphenyl)thiazol-2-yl]-1-carboxamide ([11C]DFMC, [11C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1 nM) for FAAH. [11C]1 was synthesized by C11C coupling reaction of arylboronic ester 2 with [11C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [11C]1 was obtained with a radiochemical yield of 20 ± 10% (based on [11C]CO2, decay-corrected, n = 5) and specific activity of 48–166 GBq/μmol. After the injection of [11C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [11C]1 revealed high uptakes in the cerebellar nucleus (SUV = 2.4) and frontal cortex (SUV = 2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30 min after the radioligand injection. The present results indicate that [11C]1 is a promising PET ligand for imaging of FAAH in living brain.  相似文献   

12.
In vivo imaging of β-amyloid (Aβ) aggregates consisting of Aβ(1–40) and Aβ(1–42) peptides by positron emission tomography (PET) contributes to the diagnosis and therapy for Alzheimer’s disease (AD). Because 64Cu (t1/2 = 12.7 h) is a radionuclide for PET with a longer physical half-life than 11C (t1/2 = 20 min) and 18F (t1/2 = 110 min), it is an attractive radionuclide for the development of Aβ imaging probes that are suitable for routine use. In the present study, we designed and synthesized two novel 64Cu labeled benzofuran derivatives and evaluated their utility as PET imaging probes for Aβ aggregates. In an in vitro binding assay, 6 and 8 showed binding affinity for Aβ(1–42) aggregates with a Ki value of 33 and 243 nM, respectively. In addition, these probes bound to Aβ plaques deposited in the brain of an AD model mouse in vitro. In a biodistribution experiment using normal mice, these probes showed low brain uptake (0.33% and 0.36% ID/g) at 2 min post-injection. Although refinement to enhance brain uptake is needed, [64Cu]6 and [64Cu]8 demonstrated the feasibility of developing novel PET probes for imaging Aβ aggregates.  相似文献   

13.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

14.
We report the synthesis and evaluation of a series of fluoro-oligo-ethoxylated 4-benzylpiperazine derivatives as potential σ1 receptor ligands. In vitro competition binding assays showed that 1-(1,3-benzodioxol-5-ylmethyl)-4-(4-(2-fluoroethoxy)benzyl)piperazine (6) exhibits low nanomolar affinity for σ1 receptors (Ki = 1.85 ± 1.59 nM) and high subtype selectivity (σ2 receptor: Ki = 291 ± 111 nM; Kiσ2/Kiσ1 = 157). [18F]6 was prepared in 30–50% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via nucleophilic 18F? substitution of the corresponding tosylate precursor. The log DpH 7.4 value of [18F]6 was found to be 2.57 ± 0.10, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiotracers in organs known to contain σ1 receptors, including the brain, lungs, kidneys, heart, and spleen. Administration of haloperidol 5 min prior to injection of [18F]6 significantly reduced the concentration of radiotracers in the above-mentioned organs. The accumulation of radiotracers in the bone was quite low suggesting that [18F]6 is relatively stable to in vivo defluorination. The ex vivo autoradiography in rat brain showed high accumulation of radiotracers in the brain areas known to possess high expression of σ1 receptors. These findings suggest that [18F]6 is a suitable radiotracer for imaging σ1 receptors with PET in vivo.  相似文献   

15.
Synthesis, in vitro and in vivo evaluation of [O-methyl-11C]dimethylamino-3(4-methoxyphenyl)-3H-pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-one (1), a potential imaging agent for mGluR1 receptors using PET are described. Synthesis of the corresponding desmethyl precursor 2 was achieved by demethylation of the methoxyphenyl compound 1 in 90% yield. Methylation using [11C]MeOTf in presence of NaOH afforded [11C]1 in 30% yield (EOS) with >99% chemical and radiochemical purities and with a specific activity of 3–5 Ci/μmol (n = 6). The total synthesis time was 30 min from EOB. The radiotracer selectively labeled mGluR1 receptors in slide-mounted sections of postmortem human brain containing cerebellum, hippocampus, prefrontal cortex and striatum as demonstrated by in vitro autoradiography using phosphor-imaging. PET studies in anesthetized baboon show that [11C]1 penetrates the BBB and accumulates in cerebellum, a region reported to have higher expression of mGluR1. These findings suggest [11C]1 is a promising PET radiotracer candidate for mGluR1.  相似文献   

16.
The discovery and optimization of novel N-(3-(1,3-dioxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-4-yloxy)phenyl)benzenesulfonamide GPR119 agonists is described. Modification of the pyridylphthalimide motif of the molecule with R1 = –Me and R2 = iPr substituents, incorporated with a 6-fluoro substitution on the central phenyl ring offered a potent and metabolically stable tool compound 22.  相似文献   

17.
Radiosynthesis and in vitro evaluation of [18F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([18F]BMS-754807 or [18F]1) a specific IGF-1R inhibitor was performed. [18F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [18F]TBAF in DMSO at 170 °C at high radiochemical purity and specific activity (1–2 Ci/μmol, N = 10). The proof of concept of IGF-IR imaging with [18F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [18F]1 can be a potential PET tracer for monitoring IGF-1R.  相似文献   

18.
1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki = 2.6 nM) with a low binding affinity for the 5-HT1A receptor (Ki = 476 nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [11C]4 was synthesized at high radiochemical yield and specific activity, by O-[11C]methylation of 2′-(piperazin-1-yl)-[1,1′-biphenyl]-4-ol (6) with [11C]methyl iodide. Autoradiography revealed that [11C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [11C]4 in the brain exceeded 90% of the radioactive components at 15 min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [11C]4 in the brain (1.2 SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [11C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.  相似文献   

19.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

20.
Coumarins are naturally-occurring compounds that have attracted considerable interest due to their numerous biological activities depending on their pattern of substitution on the coumarin molecule. In this present investigation, we synthesized 3-(4-nitrophenyl)coumarin derivatives (9a–e) and evaluated their in vitro cytotoxic effect on human lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cell lines for 48 h using crystal violet dye binding assay. Cytotoxic effects of the most active compound on normal human lung (MRC-9) and breast (MCF-10A) cell lines, cell cycle analysis using flow cytometry and mitochondrial membrane potential (MMP) using Tetramethyl Rhodamine Methyl Ester (TMRM; rhodamine-123) fluorescent dye were also examined. Among the compounds that were evaluated, 9c showed cytotoxic effect (active), caused significant cells arrest (p < 0.05) in G0/G1 and S phases of cell cycle and loss of MMP in A459, MDA-MB-231 and PC3 cell lines. Additionally, the cytotoxic effect of 9c was compared to reference drugs (Coumarin and Docetaxel) for comparative study. These results further demonstrate that acetoxy group at C-7 and C-8 positions of 9c are responsible for the observed cytotoxic effect in these cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号