首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hyaluronate degradation in 3T3 and simian virus-transformed 3T3 cells   总被引:4,自引:0,他引:4  
The cellular control of hyaluronate levels was examined in cultures of simian virus 40-transformed 3T3 (SV3T3) and 3T3 cells which are known to differ in their metabolism of hyaluronate. When [3H]hyaluronate was added to cultures of the two cell lines, four times more ligand was bound per mg of protein by the SV3T3 cells than by the 3T3 cells. Of the bound [3H] hyaluronate, 40% was degraded by the SV3T3 cells to oligosaccharides characteristic of the breakdown of hyaluronate, but only 2% was degraded by 3T3 cells. Hyaluronidase activity was found in the cell layer and medium of the SV3T3 cultures, but was not detectable in 3T3 cells. The SV3T3 enzyme was active only at acidic pH, but at neutral pH the secreted SV3T3 hyaluronidase was thermally more stable then the cell-associated enzyme. In contrast, both cell lines were found to contain similar amounts of beta-glucuronidase and beta-N-acetylglucosaminidase activity. We conclude that the elevated capacity of SV3T3 cells to degrade hyaluronate may be partially responsible for their lack of the hyaluronate-containing pericellular coat which is prominent around 3T3 cells.  相似文献   

3.
Condensation of 3'-deoxy-3-deazaadenosine, 3'-deoxy-7-deazaadenosine and 3'-deoxyadenosine with N,N'-bis-trifluoroacetyl-L-homocystine dimethyl ester and subsequent deprotection of the resulting N-trifluoroacetyl-S-3'-deoxyadenosyl-L-homocysteine analogues afforded S-3'-deoxy-3-deazaadenosyl-L-homocysteine, S-3'-deoxy-7-deazaadenosyl-L-homocysteine and S-3'-deoxyadenosyl-L-homocysteine respectively. 3'-Deoxy-3-deazaadenosine and 3'-deoxy-7-deazaadenosine were prepared by transformation of the corresponding ribonucleosides with 2-acetoxyisobutyryl bromide. 3'-Deoxy-7-deazaadenosine and 3'-deoxyadenosine were also converted into their 5'-chloro-3',5'-dideoxy derivatives which in turn were condensed with L-homocysteine sodium salt to give S-3'-deoxy-7-deazaadenosyl-L-homocysteine and S-3'-deoxyadenosyl-L-homocysteine which were identical with those synthesized by condensation of the protected L-homocystine with the 3'-deoxynucleosides.  相似文献   

4.
Po-Ju Chu  Hugh M. Robertson  Philip M. Best   《Gene》2001,280(1-2):37-48
The γ subunits of voltage-dependent calcium channels influence calcium current properties and may be involved in other physiological functions. Five distinct γ subunits have been described from human and/or mouse. The first identified member of this group of proteins, γ1, is a component of the L-type calcium channel expressed in skeletal muscle. A second member, γ2, identified from the stargazer mouse regulates the targeting of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors to the postsynaptic membrane. We report here the identification of three novel γ subunits from rat and mouse as well as the unidentified rat, mouse and human orthologs of the previously described subunits. Phylogenetic analysis of the 24 mammalian γ subunits suggests the following relationship ((((γ2, γ3), (γ4, γ8)), (γ5, γ7)), (γ1, γ6)) that indicates that they evolved from a common ancestral γ subunit via gene duplication. Our analysis reveals that the novel γ subunit γ6 most closely resembles γ1 and shares with it the lack of a PSD-95/DLG/ZO-1 (PDZ)-binding motif that is characteristic of most other γ subunits. Rat γ subunit mRNAs are expressed in multiple tissues including brain, heart, lung, and testis. The expression of γ1 mRNA and the long isoform of γ6 mRNA is most robust in skeletal muscle, while γ6 is also highly expressed in cardiac muscle. Based on our analysis of the molecular evolution, primary structure, and tissue distribution of the γ subunits, we propose that γ1 and γ6 may share common physiological functions distinct from the other homologous γ subunits.  相似文献   

5.
Benzo[a]pyrene-transformed Balb 3T3 cells (BP3T3) exhibit "normal" growth controls at low concentrations of serum. Epidermal growth factor (EGF) stimulates DNA synthesis and cell division in both Balb 3T3 and BP3T3 cells at physiological concentrations. The growth response of BP3T3 cells to EGF is qualitatively the same as that of 3T3 cells, however, the transformed cells have a lower quantitative requirement. Both 3T3 and BP3T3 cells show a density-dependent response to EGF, but the shift in the dose response curve for BP3T3 cells at high cell density is smaller than that seen for 3T3 cells. One cause of the restricted growth of 3T3 cells at high cell density compared with BP3T3 cells is the increased concentration of growth factor needed for stimulation of 3T3 cells at higher cell densities. A lower rate of depletion of other growth factory by BP3T3 cells may also explain the smaller effect of cell density on the EGF response of these cells.  相似文献   

6.
The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process.  相似文献   

7.
Optical thermal denaturation and circular dichroism (CD) experiments were performed with the following non-selfcomplementary duplex DNA, RNA and DNA.RNA hybrids: (I) dGAG3C3G3CTC.dGAGC3G3C3TC, (II) dGAG3m5C3G3m5CTC.dGAGm5C3G3m5C3TC, (III) rGAG3C3G3CUC.rGAGC3G3C3UC, (IV) dGAG3C3G3CTC.rGAGC3G3C3UC, (V) rGAG3C3G3CUC.dGAGC3G3C3TC, (VI) dGAG3m5C3G3m5CTC.rGAGC3G3C3UC, (VII) rGAG3C3G3CUC.dGAGm5C3G3m5C3TC. Duplex stabilities (delta G degrees at 60 degrees C) increase in the order: I less than IV less than II = V = VI less than VII less than III. Large enthalpic stabilization is associated with intrastrand stacking of guanosine (rG) residues. CD spectroscopy indicates B-form conformations for the unmethylated and methylated DNA (I,II), A-form geometry for the RNA (III), and DNA.RNA hybrid (IV - VII) conformations resembling but not identical to A-RNA. C5-methyldeoxycytidine does not significantly influence DNA conformation, DNA.RNA hybrid formation, or the ability of DNA to adopt an A-type conformation in trifluoroethanol solutions.  相似文献   

8.
9.
Cyclic AMP-dependent protein kinase and 3H-cAMP-binding activities were determined in normal Balb 3T3 cells and compared with the same preparations from SV40, chemical, and spontaneous transformants of 3T3 cells. The cytosolic protein kinase activities and protein kinase activity ratios were similar in all cell lines, although when the normal 3T3 cytosol was prepared by homogenization it contained less 3H-cAMP binding activity than the transformed 3T3 cytosols. The Triton X-100 treated particulate fractions from the normal and transformed 3T3 cells contained similar protein kinase and binding activities. The isozymic profile of cAMP-dependent protein kinases was examined by DEAE-chromatography. The 3T3 cells contained only type II isozyme in either cytosolic or membrane fractions. All transformants of the 3T3 cells contained both type I and type II isozymes. Other cell cultures, including chicken embryo fibroblasts, rat kidney cells, and human or calf endothelial cells contained type I and type II isozymes. Binding of the photoaffinity analogue of cAMP, 8-N3 cAMP, to the regulatory subunits of protein kinases in sonicates obtained from Balb 3T3 and SV 3T3 cells followed by separation on SDS polyacrylamide electrophoresis showed that the amount of RII subunit was approximately equal in the two cell lines. RI in Balb 3T3 cells was detectable but in a much lower quantity than in SV 3T3 cells. The cyclic AMP dependent-protein kinases from Balb 3T3 cells appears to be different from SV 3T3 cells by three criteria: 3H-cAMP binding in homogenates, DEAE chromatographic separation of isozymes, and 8-N3 cAMP binding.  相似文献   

10.
B Wang  H Yang  Y C Liu  T Jelinek  L Zhang  E Ruoslahti  H Fu 《Biochemistry》1999,38(38):12499-12504
The 14-3-3 proteins interact with diverse cellular molecules involved in various signal transduction pathways controlling cell proliferation, transformation, and apoptosis. To aid our investigation of the biological function of 14-3-3 proteins, we have set out to identify high-affinity antagonists. By screening phage display libraries, we have identified a set of peptides which bind 14-3-3 proteins. One of these peptides, termed R18, exhibited a high affinity for different isoforms of 14-3-3 with estimated K(D) values of 7-9 x 10(-)(8) M. Recognition of multiple isoforms of 14-3-3 suggests the targeting of R18 to a structure that is common among 14-3-3 proteins, such as the conserved ligand-binding groove. Indeed, mutations that alter critical residues in the ligand-binding site of 14-3-3 drastically decreased the level of 14-3-3-R18 association. R18 efficiently blocked the binding of 14-3-3 to the kinase Raf-1, a physiological ligand of 14-3-3, and effectively abolished the protective role of 14-3-3 against phosphatase-induced inactivation of Raf-1. The cocrystal structure of R18 in complex with 14-3-3zeta revealed the occupancy of the general binding groove of 14-3-3zeta by R18, explaining the potent inhibitory effect of R18 on 14-3-3-ligand interactions. Such a well-defined peptide will be an effective tool for probing the role of 14-3-3 in various signaling pathways, and may lead to the development of 14-3-3 antagonists with pharmacological applications.  相似文献   

11.
14-3-3 proteins bind their targets through a specific serine/threonine-phosphorylated motif present on the target protein. This binding is a crucial step in the phosphorylation-dependent regulation of various key proteins involved in signal transduction and cell cycle control. We report that treatment of COS-7 cells with the phosphatase inhibitor calyculin A induces association of 14-3-3 with a 55-kDa protein, identified as the intermediate filament protein vimentin. Association of vimentin with 14-3-3 depends on vimentin phosphorylation and requires the phosphopeptide-binding domain of 14-3-3. The region necessary for binding to 14-3-3 is confined to the vimentin amino-terminal head domain (amino acids 1-96). Monomeric forms of 14-3-3 do not bind vimentin in vivo or in vitro, indicating that a stable complex requires the binding of a 14-3-3 dimer to two sites on a single vimentin polypeptide. The calyculin A-induced association of vimentin with 14-3-3 in vivo results in the displacement of most other 14-3-3 partners, including the protooncogene Raf, which nevertheless remain capable of binding 14-3-3 in vitro. Concomitant with 14-3-3 displacement, calyculin A treatment blocks Raf activation by EGF; however, this inhibition is completely overcome by 14-3-3 overexpression in vivo or by the addition of prokaryotic recombinant 14-3-3 in vitro. Thus, phosphovimentin, by sequestering 14-3-3 and limiting its availability to other target proteins can affect intracellular signaling processes that require 14-3-3.  相似文献   

12.
The seven highly conserved 14-3-3 proteins expressed in mammalian cells form a complex pattern of homo- and hetero-dimers, which is poorly characterized. Among the 14-3-3 proteins 14-3-3sigma is unique as it has tumor suppressive properties. Expression of 14-3-3sigma is induced by DNA damage in a p53-dependent manner and mediates a cell cycle arrest. Here we show that the 14-3-3sigma protein exclusively forms homodimers when it is ectopically expressed at high levels, whereas ectopic 14-3-3zeta formed heterodimers with the 5 other 14-3-3 isoforms. The x-ray structure of 14-3-3sigma?revealed 5 residues (Ser5, Glu20, Phe25, Q55, Glu80) as candidate determinants of dimerization specificity. Here we converted these amino-acids to residues present in 14-3-3zeta at the analogous positions. Thereby, Ser5, Glu20 and Glu80 were identified as key residues responsible for the selective homodimerization of 14-3-3sigma. Conversion of all 5 candidate residues was sufficient to switch the dimerization pattern of 14-3-3sigma to a pattern which is very similar to that of 14-3-3zeta. In contrast to wildtype 14-3-3sigma this 14-3-3sigma variant and 14-3-3zeta were unable to mediate inhibition of cell proliferation. Therefore, homodimerization by 14-3-3sigma is required for its unique functions among the 7 mammalian 14-3-3 proteins. As inactivation of 14-3-3sigma sensitizes to DNA-damaging drugs, substances designed to interfere with 14-3-3sigma dimerization may be used to inactivate 14-3-3sigma function for cancer therapeutic purposes.  相似文献   

13.
14.
15.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

16.
Subunit configuration of heteromeric cone cyclic nucleotide-gated channels   总被引:4,自引:0,他引:4  
Peng C  Rich ED  Varnum MD 《Neuron》2004,42(3):401-410
Cone photoreceptor cyclic nucleotide-gated (CNG) channels are thought to be tetrameric assemblies of CNGB3 (B3) and CNGA3 (A3) subunits. We have used functional and biochemical approaches to investigate the stoichiometry and arrangement of these subunits in recombinant channels. First, tandem dimers of linked subunits were used to constrain the order of CNGB3 and CNGA3 subunits; the properties of channels formed by B3/B3+A3/A3 dimers, or A3/B3+B3/A3 dimers, closely resembled those of channels arising from B3+A3 monomers. Functional markers in B3/B3 (or A3/A3) dimers confirmed that both B3 subunits (and both A3 subunits) gained membership into the pore-forming tetramer and that like subunits were positioned adjacent to each other. Second, chemical crosslinking and co-immunoprecipitation studies using epitope-tagged monomer subunits both demonstrated the presence of two CNGB3 subunits in cone channels. Together, these data support a preferred subunit arrangement for cone CNG channels (B3-B3-A3-A3) that is distinct from the 3A:1B configuration of rod channels.  相似文献   

17.
18.
Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.  相似文献   

19.
Previous studies have shown that the late embryogenesis abundant (LEA) group 3 proteins significantly respond to changes in environmental conditions. However, reports that demonstrate their biological role, especially in Arabidopsis, are notably limited. This study examines the functional roles of the Arabidopsis LEA group 3 proteins AtLEA3-3 and AtLEA3-4 in abiotic stress and ABA treatments. Expression of AtLEA3-3 and AtLEA3-4 is upregulated by ABA, high salinity, and osmotic stress. Results on the ectopic expression of AtLEA3-3 and AtLEA3-4 in E. coli suggest that both proteins play important roles in resistance to cold stress. Overexpression of AtLEA3-3 in Arabidopsis (AtLEA3-3-OE) confers salt and osmotic stress tolerance that is characterized during germination and early seedling establishment. However, AtLEA3-3-OE lines show sensitivity to ABA treatment during early seedling development. These results suggest that accumulation of AtLEA3-3 mRNA and/or proteins may help heterologous ABA re-initiate second dormancy during seedling establishment. Analysis of yellow fluorescent fusion proteins localization shows that AtLEA3-3 and AtLEA3-4 are mainly distributed in the ER and that AtLEA3-3 also localizes in the nucleus, and in response to salt, mannitol, cold, or BFA treatments, the localization of AtLEA3-3 and AtLEA3-4 is altered and becomes more condensed. Protein translocalization may be a positive and effective strategy for responding to abiotic stresses. Taken together, these results suggest that AtLEA3-3 has an important function during seed germination and seedling development of Arabidopsis under abiotic stress conditions.  相似文献   

20.
14-3-3 proteins via binding serine/threonine-phosphorylated proteins regulate diverse intracellular processes in all eukaryotic organisms. Here, we examine the role of 14-3-3 self-dimerization in target binding, and in the susceptibility of 14-3-3 to undergo phosphorylation. Using a phospho-specific antibody developed against a degenerated mode-1 14-3-3 binding motif (RSxpSxP), we demonstrate that most of the 14-3-3-associated proteins in COS-7 cells are phosphorylated on sites that react with this antibody. The binding of these phosphoproteins depends on 14-3-3 dimerization, inasmuch as proteins associated in vivo with a monomeric 14-3-3 form are not recognized by the phospho-specific antibody. The role of 14-3-3 dimerization in the phosphorylation-dependent target binding is further exemplified with two well-defined 14-3-3 targets, Raf and DAF-16. Raf and DAF-16 can bind both monomeric and dimeric 14-3-3; however, whereas phosphorylation of specific Raf and DAF-16 sites is required for binding to dimeric 14-3-3, binding to monomeric 14-3-3 forms is entirely independent of Raf and DAF-16 phosphorylation. We also find that dimerization diminishes 14-3-3 susceptibility to phosphorylation. These findings establish a significant role of 14-3-3 dimerization in its ability to bind targets in a phosphorylation-dependent manner and point to a mechanism in which 14-3-3 phosphorylation and dimerization counterregulate each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号