首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》2006,359(11):3699-3708
Synthesis of a series of heterodinuclear phenylpalladium–molybdenum(or -tungsten) complexes having a bidentate nitrogen ligand, L2PhPd–MCp(CO)3 (M = Mo, L2 = tmeda (12), bpy (13), phen (14); M = W, L2 = tmeda (15)) by metathetical reactions of PdPhIL2 with Na[MCp(CO)3] and acylplatinum–molybdenum(or -tungsten) complex having a 1,2-bis(diphenylphosphino)ethane ligand, (dppe)(RCO)Pt–MCp(CO)3 (M = Mo, R = Et (16), CH2CMe3 (18); M = W, R = Et (17)) by CO insertion into Pt–C bond in corresponding alkyl analogues (dppe)RPt–MCp(CO)3 (M = Mo, R = Et (6), CH2CMe3, M = W, R = Et (8)) are described. These complexes are characterized by NMR and IR spectroscopies and elemental analyses, and the molecular structures of 12, 13, 17 and 18 are determined by X-ray structure analysis. The geometry at Pt (or Pd) is square planar and the MCp(CO)3 moiety has three-leg piano-stool geometries in these complex expect the propionylplatinum–tungsten complex 17, which shows apparent but unexpected structural deformation at Pt and W, giving twisted square-planar and four-leg piano-stool geometries for platinum and tungsten, respectively.  相似文献   

2.
《Inorganica chimica acta》2006,359(11):3549-3556
A series of cationic trispyrazolylmethane complexes of the general form [TmRM(CH3CN)3]2+ (Tm = tris(pyrazolyl)methane, 1, R = 3,5-Me2, M = Fe(II); 2, R = 3-Ph, M = Fe(II); 3, R = 3,5-Me2, M = Co(II); 4, R = 3-Ph, M = Co(II)) with ‘piano-stool’ structures was prepared by the reaction of the N3tripodal ligands (TmR)with [(CH3CN)6M](BF4)2 in a 1:1 stoichiometric ratio. Magnetic susceptibility measurements indicate that all four complexes with BF4 counter anions are paramagnetic, high-spin systems in the solid state with μeff at high temperatures of 5.2 (1, S = 2), 5.4 (2, S = 2), 4.9 (3, S = 3/2) and 4.6 (4, S = 3/2) BM, respectively. Comparisons of bond lengths from the metal centre to the TmR nitrogen donors, and from the metal centre to the acetonitrile nitrogen donors indicate that the neutral tripodal ligands appear to be more weakly coordinated to the metal centre than are the acetonitrile ligands. Reactions of these tripodal complexes with bidentate phosphine ligands, such as 1,2-diphosphinoethane or 1,2-bis(diallylphosphino)ethane leads to displacement of the tripodal ligand, or to the formation of more thermally stable bis-ligand complexes M(TmR)2 (R = 3,5-dimethyl).  相似文献   

3.
The anti-Trypanosoma cruzi activity of 5-nitro-2-furfuriliden derivatives as well as the cytotoxicity of these compounds on J774 macrophages cell line and FN1 human fibroblast cells were investigated in this study. The most active compounds of series I and II were 4-butyl-[N′-(5-nitrofuran-2-yl) methylene] benzidrazide (3g; IC50 = 1.05 μM ± 0.07) and 3-acetyl-5-(4-butylphenyl)-2-(5-nitrofuran-2-yl)-2,3-dihydro,1,3,4-oxadiazole (4g; IC50 = 8.27 μM ± 0.42), respectively. Also, compound 3g was more active than the standard drugs, benznidazole (IC50 = 22.69 μM ± 1.96) and nifurtimox (IC50 = 3.78 μM ± 0.10). Regarding the cytotoxicity assay, the 3g compound presented IC50 value of 28.05 μM (SI = 26.71) against J774 cells. For the FN1 fibroblast assay, 3g showed IC50 value of 98 μM (SI = 93.33). On the other hand, compound 4g presented a cytotoxicity value on J774 cells higher than 400 μM (SI >48), and for the FN1 cells its IC50 value was 186 μM (SI = 22.49). Moreover, an exploratory data analysis, which comprises hierarchical cluster (HCA) and principal component analysis (PCA), was carried out and the findings were complementary. The molecular properties that most influenced the compounds’ grouping were C log P and total dipole moment, pointing out the need of a lipophilic/hydrophilic balance in the designing of novel potential anti-T. cruzi molecules.  相似文献   

4.
The interactions of a ruthenium porphyrin complex [(Py-3′)TPP-Ru(phen)2Cl]Cl (phen = 1,10-phenanthroline, (Py-3′)TPP = 5-(3′-pyridyl-10,15,20-triphenylporphyrin) (1) and its heterometallic derivatives, [Ni(Py-3′)TPP-Ru(phen)2Cl][PF6] (2) and [Cu(Py-3′)TPP-Ru(phen)2Cl][PF6] (3), with calf thymus DNA have been investigated by spectroscopic and viscosity measurements in this study. The results showed that these synthetic complexes can bind to double strand helix DNA in groove binding mode, and the intrinsic binding constants of complexes 1, 2 and 3, as calculated according to the decay of the Soret absorption, are (1.35 ± 0.5) ×105 M?1 (s = 4.2), (1.29 ± 0.5) × 105 M?1 (s = 5.6) and (1.22 ± 0.5) × 105 M?1 (s = 6.2) (s is the binding-site size), respectively, which are consistent with those obtained from ethidium bromide-quenching experiments. Further investigations on the photocleavage properties of these complexes on plasmid pBR 322 DNA showed that complexes 1, 2 and 3 could cleave single chain DNA and convert DNA molecules from supercoiled form to the nicked form. As determined by MTT assay, the complexes were also identified as potent antiproliferative agents against A375 human melanoma cells, MCF-7 human breast adrenocarcinoma cells, Colo201 human colon adenocarcinoma cells and HepG2 human liver cancer cells. Complex 1 inhibits the growth of A375 cells through induction of apoptotic cell death and G0/G1 cell cycle arrest. Further investigation on intracellular mechanisms indicated that Complex 1 induced depletion of mitochondrial membrane potential (ΔΨm) in A375 cells through regulating the expression of pro-survival and pro-apoptotic Bcl-2 family members. Our results suggest that ruthenium porphyrin complexes could be candidates for further evaluation as chemopreventive and chemotherapeutic agents for human cancers.  相似文献   

5.
The synthesis and characterization of homobimetallic palladium and platinum complexes of type [(Me(O)CS-4-NCN–M  NN  M–NCN-4-SC(O)Me](OTf)2 (Me(O)CS-4-NCN = [C6H2(CH2NMe2)2-2,6-SC(O)Me-4]?; NN = 4,4′-bipyridine (bipy); M = Pd, 12; M = Pt, 13) is reported. The required bifunctional thio-acetyl NCN pincer starting compound NC(Br)N-4-SC(O)Me (2) has been synthesized by the consecutive reactions of NC(Br)N–I (I-1-C6H2(CH2NMe2)2-3,5-Br-4) (1) with tBuLi, S8 and Me(O)CCl, respectively. Chemoselective metallation at the Caryl–Br bond was achieved by the reaction of 2 with the palladium(0) source [Pd2(dba)3] (3) (dba = dibenzylidene acetone). Treatment of thus formed [Pd(NCN-4-SC(O)Me)(Br)] (4) with [AgOTf] (8) (OTf = triflate, OSO2CF3) gave [Pd(NCN-4-SC(O)Me)(H2O)][OTf] (9) which was further reacted with 0.5 equiv. of 4,4′-bipyridine (11a) to afford rigid-rod structured 12. When [Pt(tol)2(SEt2)]2 (5) (tol = 4-tolyl) was used instead of 3, then 13 was produced via the in situ formation of [PtBr(NCN-4-SC(O)Me)] (7) and [Pt(NCN-4-SC(O)Me)(H2O)][OTf] (10). Another possibility to synthesize 7 relied upon the subsequent reaction of 1 with 0.5 equiv. of 5 to give [PtBr(NCN-4-I)] (6) which further reacted with tBuLi, 1/8 S8 and Me(O)CCl to afford 7. The cyclic voltammograms of 2, 7, and 13 are discussed.Complex 7 was structurally characterized by single crystal X-ray crystallography. Organometallic 7 crystallizes with three independent molecules in the asymmetric unit and displays a monomeric structure as commonly encountered in d8-metal pincer chemistry.  相似文献   

6.
In our long and broad program to explore structure–activity relationships of the natural product azepinomycin and its analogues for inhibition of guanase, an important enzyme of purine salvage pathway of nucleic acid metabolism, it became necessary to investigate if the nucleoside analogues of the heterocycle azepinomycin, which are likely to be formed in vivo, would be more or less potent than the parent heterocycle. To this end, we have resynthesized both azepinomycin (1) and its two diastereomeric nucleoside analogues (2 and 3), employing a modified, more efficient procedure, and have biochemically screened all three compounds against a mammalian guanase. Our results indicate that the natural product is at least 200 times more potent toward inhibition of guanase as compared with its nucleoside analogues, with the observed Ki of azepinomycin (1) against the rabbit liver guanase = 2.5 (±0.6) × 10?6 M, while Ki of Compound 2 = 1.19 (±0.02) × 10?4 M and that of Compound 3 = 1.29 (±0.03) × 10?4 M. It is also to be noted that while IC50 value of azepinomycin against guanase in cell culture has long been reported, no inhibition studies nor Ki against a pure mammalian enzyme have ever been documented. In addition, we have, for the first time, determined the absolute stereochemistry of the 6-OH group of 2 and 3 using conformational analysis coupled with 2-D 1H NMR NOESY  相似文献   

7.
《Inorganica chimica acta》2006,359(7):2015-2022
The reaction of [Cu(tren)(OH2)](ClO4)2 with KCN gave a mononuclear complex [Cu(tren)(CN)](ClO4) (1) (tren = tris(2-aminoethyl)amine). Using 1 as a building block, one pentanuclear compound, [{Cu(tren)(NC)}4Ni](ClO4)6 (2) and two trinuclear complexes, [{Cu(tren)NC}2Co(tren)](ClO4)5 · 2H2O (3), [{Cu(tren)CN}2NiL](ClO4)4 (4) (L = 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) were prepared and characterized by single crystal X-ray analysis. In 1, Cu(II) atom adopts a distorted trigonal bipyramidal (TBP) geometry. In 2, the Ni(II) atom occupies the center of the pentanuclear compound with a square-planar coordination geometry. In 3, the six-coordinated Co(III) atom presents a distorted octahedral geometry with four nitrogen atoms from tren and two carbon atoms of bridged cyano groups in cis-positions. In 4, the nickel atom is located in an inversion center and coordinated with two [(tren)CuCN]+ moieties through cyano-bridging ligands. Magnetic susceptibility measurements of 24 show that the magnetic interactions between the heterometallic ions are antiferromagnetical coupling through the cyano bridges with g = 2.25, J = −0.142 cm−1 and J = −0.167 cm−1 for 2, g = 2.06, J = −0.094 cm−1 for 3, and g = 2.20, J = −33.133 cm−1 for 4. The correlations between the structures and the J values are discussed.  相似文献   

8.
《Inorganica chimica acta》2006,359(7):2285-2290
Stopped-flow kinetic measurements were used to compare the reactivities of [Ru(medtra)(H2O)] (medtra3− = N-methylethylenediaminetriacetate) (1) and [Ru(hedtra)(H2O)] (2) (hedtra3− = N-hydroxyethylethylenediaminetriacetate) with NO in aqueous solution at 15 °C, pH 7.2 (phosphate buffer). The measured second-order rate constants (3 × 103 and 6 × 104 M−1 s−1 for 1 and 2, respectively) are three to four order of magnitudes lower than that for the reaction between [RuIII(edta)(H2O)] (3) with NO. However, NO scavenging studies of complexes 13, conducted by measuring the difference in nitrite production between treated and untreated murine macrophage cells, revealed that despite being less kinetically reactive toward NO, the [Ru(medtra)(H2O)] complex exhibited the highest NO scavenging ability and lowest toxicity of compounds 13.  相似文献   

9.
10.
《Inorganica chimica acta》2006,359(5):1549-1558
Reactions of Cp*RhCl2(PPh3) (1) with 1-alkyne and H2O in the presence of KPF6 generated alkenyl ketone complexes [Cp*Rh(CRCHCOCH2R)(PPh3)](PF6) (2) (R = Ph (a), C6H4p-Me (b), C6H4-p-COOMe (c), C6H4-p-NO2 (d)). A similar complex [Cp*Rh(CPhCHCOCH2Ph)(PMePh2)](PF6) (2e) was obtained by use of Cp*RhCl2(PMePh2). It was revealed by X-ray analyses of 2b, 2c and 2e that the complexes 2 consist of the five-membered ring structures bound by the carbon and oxygen atoms of the alkenyl ketone group. Similar reactions of Cp*IrCl2(PPh3) (6) or (C6Me6)RuCl2(PPh3) (7) proceeded with a cleavage of C–C triple bond of 1-alkyne without formation of an alkenyl ketone complex, affording the corresponding carbonyl complexes, [Cp*IrCl(PPh3)(CO)](PF6) (8) or [(C6Me6)RuCl(PPh3)(CO)](PF6) (9). The diphosphine complexes [(Cp*MCl2)2{μ-diphos}] (4: M = Rh, diphos = dppm,; 12a: M = Ir, diphos = dppm; 12b: M = Ir, diphos = dppb) gave a Cl-bridged rhodium complex [{Cp*Rh(μ-Cl)}2{μ-dppm}](PF6)2 (5), mono-carbonyl or dicarbonyl iridium complexes,[(Cp*IrCl2){μ-dppm}{Cp*IrCl(CO)}](PF6)(13a) or [{Cp*IrCl(CO)}2{μ-dppb}](PF6)2 (14b), respectively.  相似文献   

11.
We synthesized four types of arginine-based amphipathic nonapeptides, including two homochiral peptides, R-(l-Arg-l-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: FAM-1; R = Ac: Ac-1) and R-(d-Arg-d-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: ent-FAM-1; R = Ac: ent-Ac-1); a heterochiral peptide, R-(l-Arg-d-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: FAM-2; R = Ac: Ac-2); and a racemic mixture of diastereomeric peptides, R-(rac-Arg-rac-Arg-Aib)3-NH2 (R = 6-FAM-β-Ala: FAM-3; R = Ac: Ac-3), and then investigated the relationship between their secondary structures and their ability to pass through cell membranes. Peptides 1 and ent-1 formed stable one-handed α-helical structures and were more effective at penetrating HeLa cells than the non-helical peptides 2 and 3.  相似文献   

12.
The synthesis, crystallographic analysis and magnetic studies of six new copper(II) complexes of formulae [Cu(μ-ala)(im)(H2O)]n(ClO4)n (1), [Cu(μ-ala)(pz)(μ-ClO4)] (2), [Cu(μ-phe)(im)(H2O)]n(ClO4)n (3), [Cu(μ-gly)(H2O)(ClO4)]n (4), [Cu(μ-gly)(pz)(ClO4)]n(5) and [Cu(μ-pro)(pz)(ClO4)]n (6) have been carried out (ala = alanine; phe = phenylalanine; gly = glycine; pro = proline; im = imidazole; pz = pyrazole). In all cases, the deprotonated aminoacid ligand acts as chelate through the N(amine) and one O(carboxylato), whereas the second O atom of the same carboxylato acts as a bridge to the neighbouring copper(II) ion. The coordination of copper(II) ions is square-pyramidal in all complexes but 2 (elongated Oh). All complexes (16) are uniform chains with syn–anti (equatorial–equatorial) coordination mode of the carboxylato bridging ligand, exhibiting intrachain ferromagnetic interactions.  相似文献   

13.
Two dinuclear metal complexes, [Co2(bhmp)(MeCO2)2]ClO4 · 2H2O (1) and [Ni2(bhmp)(MeCO2)2]ClO4 · 2H2O (2), were synthesized with a dinucleating ligand, 2,6-bis[bis(2-hydroxyethyl)aminomethyl]-4-methylphenol [H(bhmp)]. Both complexes were easily soluble in water as well as in DMF. Electronic spectra for both complexes were measured in both solvents and analyzed using the angular overlap model (AOM). From the electronic spectra and molar conductance, both complexes were determined to exist as [M2(bhmp)(MeCO2)2]+ (M = CoII or NiII) in DMF, dissociating perchlorate ions. On the other hand, in water, it was concluded that the acetate ions were partially dissociated and each complex existed as a mixture of some dissociated species, such as [M2(bhmp)(MeCO2)(H2O)2]2+ and [M2(bhmp)(H2O)4]3+ (M = CoII or NiII). Such dissociation was also confirmed by precipitation of the dissociated species when NaBPh4 was added into an aqueous solution of the nickel complex.  相似文献   

14.
Five new α-aminophosphonates are synthesized and characterized by EA, FT-IR, 1H NMR, 13C NMR, 31P NMR, ESI-MS and X-ray crystallography. The X-ray analyses reveal that the crystal structures of 1–5 are monoclinic or triclinic system with the space group P 21/c, P  1, P  1, P2(1)/c and P  1, respectively. All P atoms of 1–5 have tetrahedral geometries involving two O-ethyl groups, one Cα atom, and a double bond O atom. The binding interaction of five new α-aminophosphonate N-derivatives (1–5) with calf thymus(CT)-DNA have been investigated by UV–visible and fluorescence emission spectrometry. The apparent binding constant (Kapp) values follows the order: 1 (3.38 × 105 M−1) > 2 (3.04 × 105 M−1) > 4 (2.52 × 105 M−1) > 5 (2.32 × 105 M−1) > 3 (2.10 × 105 M−1), suggesting moderate intercalative binding mode between the compounds and DNA. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the compounds 1–5 showed that the quenching mechanism might be a static quenching procedure. For the compounds 1–5, the number of binding sites were about one for BSA and the binding constants follow the order: 1 (2.72 × 104 M−1) > 2 (2.27 × 104 M−1) > 4 (2.08 × 104 M−1) > 5 (1.79 × 104 M−1) > 3 (1.17 × 104 M−1). Moreover, the DNA cleavage abilities of 1 exhibit remarkable changes and the in vitro cytotoxicity of 1 on tumor cells lines (MCF-7, HepG2 and HT29) have been examined by MTT and shown antitumor effect on the tested cells.  相似文献   

15.
《Inorganica chimica acta》2006,359(5):1650-1658
A series of nickel(II) and palladium(II) complexes containing one or two pentafluorophenyl ligands and the phosphino-amides o-Ph2PC6H4CONHR [R = iPr (a), Ph (b)] displaying different coordination modes have been synthesised. The chelating ability of these ligands and the influence of both coligands and the metal centre in their potential hemilabile behaviour have been explored. The crystal structure of (b) has been determined and reveals N–H⋯O intermolecular hydrogen bonding. Bis-pentafluorophenyl derivatives [M(C6F5)2(o-Ph2PC6H4CO-NHR)] [M = Ni; R = iPr (1a); R = Ph (1b); M = Pd; R = iPr (2a); R = Ph (2b)] in which (a) and (b) act as rigid P, O-chelating ligands were readily prepared from the labile precursors cis-[M(C6F5)2(PhCN)2]. X-ray structures of (1a), (1b) and (2a) have been established, allowing an interesting comparative structural discussion. Dinuclear [{Pd(C6F5)(tht)(μ-Cl)}2] reacted with (a) and (b) yielding the monopentafluorophenyl complexes [Pd(C6F5)Cl{PPh2(C6H4–CONH–R)}] (R = iPr (3a), Ph (3b)) that showed a P, O-chelating behaviour of the ligands, confirmed by the crystal structure determination of (3a). New cationic palladium(II) complexes in which (a) and (b) behave as P-monodentate ligands have been synthesised by reacting them with [{Pd(C6F5)(tht)(μ-Cl)}2], stoichiometric Ag(O3SCF3) and external chelating reagents such as cod [Pd(C6F5)(cod){PPh2(C6H4-CONH-R)}](O3SCF3)(R = iPr (4a), Ph (4b)) and 2,2-bipy [Pd(C6F5)(bipy){PPh2(C6H4-CONH-R)}](O3SCF3) (R = iPr (5a), Ph (5b)). When chloride abstraction in [{Pd(C6F5)(tht)(μ-Cl)}2] is promoted by means of a dithioanionic salt as dimethyl dithiophospate in the presence of (a) or (b), the corresponding neutral complexes [Pd(C6F5){S(S)P(OMe)2}{PPh2(C6H4-CONH-R)}] (R = iPr (6a), Ph (6b)) were obtained.  相似文献   

16.
《Inorganica chimica acta》2006,359(9):2835-2841
Rh(I) carbene complexes of [RhX(bmim)(η4-1,5-cod)] type (bmim = 1-butyl-3-methyl imidazolium cation, X = Cl 2, Br 3, I 4), obtained in the reaction of [Rh(OMe)(η4-1,5-cod)]2 (1) with [bmim]X ionic liquids, catalyzed polymerization of phenylacetylene (PA) to cis-polyphenylacetylene (PPA) in CH2Cl2 and in ionic liquids. The yield of PPA increased and molecular weight (Mw) decreased after addition of phosphorus ligands PPh3 or P(OPh)3. Complex 4 reacted with P(OPh)3 giving cis-[RhI(bmim)(P(OPh)3)2] (5) complex which catalyzed oligomerization but not polymerization of PA.  相似文献   

17.
The bimetallic [M1M2(tren)2(CAn?)]m+ series, where M = GaIII or CrIII and CA is the chloranilate ligand which can take on diamagnetic (CAcat,cat)4? or paramagnetic (CAsq,cat)3? forms, comprises an electronically diverse series of compounds ranging from the closed-shell [Ga2(tren)2(CAcat,cat)]2+ to the S = 5/2 ground state of [Cr2(tren)2(CAsq,cat)]3+. This report deals with the interpretation of the EPR and ENDOR spectra of [Ga2(tren)2(CAsq,cat)](BPh4)2(BF4) (2) and the related derivative [Ga2(tren)2(DHBQ)](BPh4)2(BF4) (2a) (where DHBQ is the fully deprotonated trianionic form of 2,5-dihydroxy-1,4-benzoquinone) in an effort to further characterize the electronic structure of this radical species. The X-band (~9.5 GHz) EPR spectrum of complex 2 acquired in a butyronitrile/propionitrile glass at 4 K reveals a rhombic g-tensor with gxx = 2.0100, gyy = 2.0097, and gzz = 2.0060 with hyperfine interactions due to spin delocalization onto the two Ga nuclei (axx = 4.902 G, ayy = 4.124 G, azz = 3.167 G); the origin of the hyperfine coupling was confirmed by analysis of the room temperature spectra of complexes 2 and 2a. The low-temperature spectrum of complex 2 also indicates the presence of a triplet electronic state characterized by a g-value of 2.009 and axial zero-field splitting of D = 150 G (0.012 cm?1) as determined from measurements carried out at both X- and W-band (~95 GHz) frequencies. This triplet state is believed to arise due to a weak intermolecular Heisenberg exchange interaction between two aggregating complexes. ENDOR measurements on complex 2a at 20 K allowed for a determination of the magnitude of hyperfine coupling to the protons associated with the radical bridge as well as providing a rare example of an ENDOR signal arising from coupling to a gallium nucleus. Finally, these results were combined with literature data on the free semiquinone form of the bridging ligand in order to assess the extent to which density functional theory can predict unpaired spin density distribution in a complex molecule of this type. Although differences between theory and experiment were noted, DFT was able to provide a reasonably accurate picture of the electronic structure of this system as well as provide insight into the spin polarization mechanism(s) responsible for the observed hyperfine interactions.  相似文献   

18.
Six 1,3-diphenylpropanes exhibiting inhibitory activities against both the monophenolase and diphenolase actions of tyrosinase were isolated from the methanol (95%) extract of Broussonetia kazinoki. These compounds, 16, were identified as kazinol C (1), D (2), F (3), broussonin C (4), kazinol S (5) and kazinol T (6). The latter two species (5 and 6) emerged to be new 1,3-diphenylpropanes which we fully spectroscopically characterized. The IC50 values of compounds (1, 35) for monophenolase inhibition were determined to range between 0.43 and 17.9 μM. Compounds 1 and 35 also inhibited diphenolase significantly with IC50 values of 22.8, 1.7, 0.57, and 26.9 μM, respectively. All four active tyrosinase inhibitors (1, 35) were competitive inhibitors. Interestigly they all mainfested simple reversible slow-binding inhibition against diphenolase. The most potent inhibitor, compound 4 diplayed the following kinetic parameters k3 = 0.0993 μM?1 min?1, k4 = 0.0048 min-1, and Kiapp = 0.0485 μM.  相似文献   

19.
In continuation of our study on medicinal plants of Cameroon, stem barks of Polyalthia suaveolens were phytochemically studied. This investigation yielded a new indolosesquiterpene alkaloid, named polysin (1) and four hitherto known alkaloids (2–5). Polysin (1) appeared as a competitive reversible inhibitor (Ki = 10 μM) of phosphofructo kinase (PFK) of Trypanosoma brucei with respect to fructose-6-phosphate (Ki/KM = 0.05) and could be used in the design of new trypanocidal drugs. The other isolated compounds (2–5) also exhibited interesting inhibitory effects on selected glycolytic enzymes (PFK, glyceraldehyde-3-phosphate dehydrogenase and aldolase).  相似文献   

20.
Three new compounds formulated (ClO4)2[Fe(pq)3] (1), (BF4)2[Fe(pq)3] · EtOH (2) and {(ClO4)[MnCr(C2O4)3][Fe(pq)2(H2O)2]} (3), where pq is 2,2′-pyridylquinoline, have been synthesised and characterised. Despite the different crystal packing exhibited by 1 and 2, the cationic species [Fe(pq)3]2+ are structurally quite similar. At 293 K, the Fe–N bond lengths are characteristic of the iron(II) in the high-spin state. In contrast to 1, 2 undergoes a continuous spin transition. Indeed, at 95 K its structure experiences a noticeable change in the Fe–N bonds and angles, i.e. the Fe–N bonds shorten by 0.194 Å on the average. The magnetic behaviour confirms that 1 is fully high-spin in the 4–300 K temperature range while 2 shows a spin transition centred at T1/2 = 150 K. The corresponding enthalpy, entropy and interaction parameter are ΔH = 7.49 kJ mol?1, ΔS = 50 J K?1 mol?1and Γ = 1.35 kJ mol?1. Compound 3 has been obtained as a microcrystalline powder. The magnetic properties of 3 point at the occurrence of ferromagnetic coupling below 100 K and the onset of a ferromagnetic ordering below 10 K (Weiss constant equal to 6.8 K). The Mössbauer spectra of 3 show the occurrence of a magnetic order at T ? 4.2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号