首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compound 12 is a GPR40 agonist that realizes the full magnitude of efficacy possible via GPR40 receptor agonism. In vitro and in vivo studies demonstrated superior glucose lowering by 12 compared to fasiglifam (TAK-875), in a glucose dependent manner. The enhanced efficacy observed with the full agonist 12 was associated with both direct and indirect stimulation of insulin secretion.  相似文献   

2.
The GPR40 (FFA1) has emerged as an attractive target for a novel insulin secretagogue with glucose dependency. A series of novel orally bioavailable GPR40 agonists was discovered. SAR study and structural optimization led to identification of compounds 28a and 30a as potent GPR40 agonists with superior physiochemical properties and robust in vivo efficacy in rhesus monkeys.  相似文献   

3.
The G protein-coupled receptor 40 (GPR40) mediates enhancement of glucose-stimulated insulin secretion in pancreatic β cells. The GPR40 agonist has been attracting attention as a novel insulin secretagogue with glucose dependency for the treatment of type 2 diabetes. The optimization study of compound 1 led to a potent and bioavailable GPR40 agonist 24, which showed insulin secretion and glucose lowering effects in rat OGTT. Compound 24 is a potential lead compound for a novel insulin secretagogue with a low risk of hypoglycemia.  相似文献   

4.
The discovery, synthesis and structure-activity relationship (SAR) of novel carboxylic acid agonists for GPR40 are described. Aryl propionic acid 1, identified from a high throughput screen, was selected for chemical exploration. Compound 2 was identified as our lead molecule through efficient solid phase combinatorial array chemistry and had an attractive in vitro and in vivo pharmacokinetic profile in rat. These ligands may prove useful in establishing a role for GPR40 in insulin regulation.  相似文献   

5.
GPR40 partial agonism is a promising new mechanism for the treatment of type 2 diabetes mellitus with clinical proof of concept. Most of the GPR40 agonists in the literature have a carboxylic acid functional group, which may pose a risk for idiosyncratic drug toxicity. A novel series of GPR40 agonists containing a tetrazole as a carboxylic acid bioisostere was identified. This series of compounds features a benzo[b]thiophene as the center ring, which is prone to oxidation during phase 1 metabolism. Following SAR optimization targeting GPR40 agonist activity and intrinsic clearance in microsomes (human and rat), potent and metabolically stable compounds were selected for in vivo evaluation. The compounds are efficacious at lowering blood glucose in a SD rat oGTT model.  相似文献   

6.
The design, synthesis, and structure-activity relationship (SAR) for a series of β-substituted 3-(4-aryloxyaryl)propanoic acid GPR40 agonists is described. Systematic replacement of the pendant aryloxy group led to identification of potent GPR40 agonists. In order to identify candidates suitable for in vivo validation of the target, serum shifted potency and pharmacokinetic properties were determined for several compounds. Finally, further profiling of compound 7 is presented, including demonstration of enhanced glucose tolerance in an in vivo mouse model.  相似文献   

7.
GPR40 has become a new potential therapeutic target for the treatment of diabetes due to its role in mediating the enhancement of glucose-stimulated insulin secretion in pancreatic β cells with a low risk of hypoglycemia. As an effort to extend the chemical space and identify structurally distinct GPR40 agonists with improved liver safety, a novel series of fused-ring phenyl propanoic acid analogues were designed. Comprehensive structure-activity relationship studies around novel scaffolds were conducted and led to several analogues exhibited potent GPR40 agonistic activities and high selectivity against other fatty acid receptors. Further evaluation of pharmacokinetic (PK) profiles and in vivo efficacy identified compound 40a with excellent PK properties and significant glucose-lowering efficacy during an oral glucose tolerance test. In addition, compound 40a displayed lower hepatobiliary transporter inhibition and favorable druggability. All results indicate that compound 40a is a promising candidate for further development.  相似文献   

8.
The G-protein-coupled receptor 40 (GPR40) is an attractive molecular target for the treatment of type 2 diabetes mellitus. Previously, based on the natural oleic acid substrate, an exogenous ligand for this receptor, named AV1, was synthesized. In this context, here we validated the activity of AV1 as a full agonist, while the corresponding catechol analogue, named AV2, was investigated for the first time. The ligand-protein interaction between this new molecule and the receptor was highlighted in the lower portion of the GPR40 groove that generally accommodates DC260126. The functional assays performed have demonstrated that AV2 is a suitable GPR40 partial agonist, showing a therapeutic potential and representing a useful tool in the management of type 2 diabetes.  相似文献   

9.
Agonists of GPR40 (FFA1) have been proposed as a means to treat type 2 diabetes. Through lead optimization of a high throughput screening hit, we have identified a novel GPR40 agonist called AMG 837. The objective of these studies was to understand the preclinical pharmacological properties of AMG 837. The activity of AMG 837 on GPR40 was characterized through GTPγS binding, inositol phosphate accumulation and Ca(2+) flux assays. Activity of AMG 837 on insulin release was assessed on isolated primary mouse islets. To determine the anti-diabetic activity of AMG 837 in vivo, we tested AMG 837 using a glucose tolerance test in normal Sprague-Dawley rats and obese Zucker fatty rats. AMG 837 was a potent partial agonist in the calcium flux assay on the GPR40 receptor and potentiated glucose stimulated insulin secretion in vitro and in vivo. Acute administration of AMG 837 lowered glucose excursions and increased glucose stimulated insulin secretion during glucose tolerance tests in both normal and Zucker fatty rats. The improvement in glucose excursions persisted following daily dosing of AMG 837 for 21-days in Zucker fatty rats. Preclinical studies demonstrated that AMG 837 was a potent GPR40 partial agonist which lowered post-prandial glucose levels. These studies support the potential utility of AMG 837 for the treatment of type 2 diabetes.  相似文献   

10.
Novel pyrrole derivatives were discovered as potent agonists of the niacin receptor, GPR109A. During the derivatization, compound 16 was found to be effective both in vitro and in vivo. The compound 16 exhibited a significant reduction of the non-esterified fatty acid in human GPR109A transgenic rats, and the duration of its in vivo efficacy was much longer than niacin.  相似文献   

11.
The lead optimization studies of a series of GPR119 agonists incorporating a nortropanol scaffold are described. Extensive structure-activity relationship (SAR) studies of the lead compound 20f led to the identification of compound 36j as a potent, single digit nanomolar GPR119 agonist with high agonist activity. Compound 36j was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test and increased plasma insulin levels in a rat hyperglycemic model. It showed good to excellent pharmacokinetic properties in rats and monkeys and no untoward activities in counter-screen assays. Compound 36j demonstrated an attractive in vitro and in vivo profile for further development.  相似文献   

12.
Screening hit 5 was identified in a biochemical screen for GPR119 agonists. Compound 5 was structurally novel, displayed modest biochemical activity and no oral exposure, but was structurally distinct from typical GPR119 agonist scaffolds. Systematic optimization led to compound 36 with significantly improved in vitro activity and oral exposure, to elevate GLP1 acutely in an in vivo mouse model at a dose of 10 mg/kg.  相似文献   

13.
14.
Free fatty acid receptor 1 (FFA1 or GPR40) has been studied for many years as a target for the treatment of type 2 diabetes mellitus. In order to increase potency and reduce hepatotoxicity, a series of novel compounds containing imidazo[1,2-a]pyridine scaffold as GPR40 agonist were synthesized. Compound I-14 was identified as an effective agonist as shown by the conspicuous drop in blood glucose in normal and diabetic mice. It had no risk of hepatotoxicity compared with TAK-875. Moreover, good pharmacokinetic (PK) properties of I-14 were observed (CL = 27.26 ml/h/kg, t1/2 = 5.93 h). The results indicate that I-14 could serve as a possible candidate to treat diabetes.  相似文献   

15.
A novel series of GPR40 agonists is designed by introducing nitrogen-containing heterocyclic ring at the terminal phenyl ring of TAK-875 with the aim of decreasing its lipophilicity. Three different β-substituted phenylpropionic acids were investigated as the acidic components. A total of 34 compounds have been synthesized, among which, compound 30 exhibited comparable GPR40 agonistic activity in vitro with TAK-875 and relatively lower lipophilicity through calculation (30, EC50?=?1.2?μM, cLogP?=?1.3; TAK-875: EC50?=?5.1?μM, cLogP?=?3.4). Moreover, compound 30 was able to enhance the insulin secretion of primary islets isolated from normal ICR mice and showed no obvious inhibition against cytochromes P450 in vitro. In vivo, compound 30 exhibited efficacy in oral glucose tolerance test (oGTT) in normal ICR mice.  相似文献   

16.
A series of thienopyrimidine derivatives was synthesized and evaluated for their GPR119 agonistic ability. Several thienopyrimidine derivatives containing R1 and R2 substituents displayed potent GPR119 agonistic activity. Among them, compound 5d, which is a prototype, showed good in vitro activity with an EC50 value of 3 nM and human and rat liver microsomal stability. Compound 5d exhibited no CYP inhibition and induction, Herg binding, or mutagenic potential. Compound 5d showed increase insulin secretion in beta TC-6 cell and lowered the glucose excursion in mice in an oral glucose-tolerance test.  相似文献   

17.
18.
GPR54 is a G protein-coupled receptor (GPCR) which was formerly an orphan receptor. Recent functional study of GPR54 revealed that the receptor plays an essential role to modulate sex-hormones including GnRH. Thus, antagonists of GPR54 are expected to be novel drugs for sex-hormone dependent diseases such as prostate cancer or endometriosis. We recently reported 2-acylamino-4,6-diphenylpyridines as the first small molecule GPR54 antagonists with high potency. However, the representative compound 1 showed low brain exposure, where GPR54 acts as a modulator of gonadotropins by binding with its endogenous ligand, metastin. In order to discover compounds that have not only potent GPR54 antagonistic activity but also good brain permeability, we focused on converting the primary amine on the side chain to a secondary or tertiary amine, and finally we identified 15a containing a piperazine group. This compound exhibited high affinity to human and rat GPR54, apparent antagonistic activity, and high brain exposure. In addition, intravenous administration of 15a to castrated male rat suppressed plasma LH level, which indicates the possibility of a small molecule GPR54 antagonist as a novel drug for sex-hormone dependent diseases.  相似文献   

19.
Type 2 Diabetes Mellitus with insulin resistance, pancreatic β cell dysfunction, and hepatic glucose overproduction is increasing in epidemic proportions worldwide. G protein-coupled receptor 40 (GPR40), a clinically proven anti-diabetic drug target, is mainly expressed in pancreatic β cells and insulin-secreting cell lines. Long chain fatty acids (LCFA) increase intracellular calcium concentration and amplify glucose-stimulated insulin secretion by activating GPR40. Here we report that the arginine 104 (R104) is critical for the normal function of GPR40. Mutation of R104 to Proline (R104P) results in complete loss of the receptor function. Linoleic acid, ligand of GPR40, could not elicit calcium increase and ERK phosphorylation in cells expressing this mutant receptor. Further study indicated the R104P mutation reduces cell surface localization of GPR40 without affecting the expression of the protein. The small portion of GPR40 R104P mutant that is still located on the membrane has no physiological function, and does not internalize in response to linoleic acid stimulation. These data demonstrate that R104 in GPR40 is critically involved in the normal receptor functions. Interestingly, R104P is a registered single-nucleotide polymorphism of GPR40. The relationship of this GPR40 variant and type 2 diabetes warrants further investigation.  相似文献   

20.
A series of novel tetrahydropyridine derivatives were prepared and evaluated using cell-based measurements. Systematic optimization of general structure G-1 led to the identification of compound 35 (EC50 = 4.9 nM) and 37 (EC50 = 8.8 nM) with high GPR119 agonism activity and moderate clog P. Through single and long-term pharmacodynamic experiments, we found that compound 35 showed a hypoglycemic effect and may have an effect on improving basal metabolic rate in DIO mice. Both in vitro and in vivo tests indicated that compound 35 was a potential potent GPR119 agonist in allusion to T2DM treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号