首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light-dependent RNA interference with nucleobase-caged siRNAs   总被引:1,自引:0,他引:1  
Mikat V  Heckel A 《RNA (New York, N.Y.)》2007,13(12):2341-2347
  相似文献   

2.
In RNA interference (RNAi), short double-stranded RNA (known as siRNA) inhibits expression from homologous genes. Clinical or pre-clinical use of siRNAs is likely to require stabilizing modifications because of the prevalence of intracellular and extracellular nucleases. In order to examine the effect of modification on siRNA efficacy and stability, we developed a new method for synthesizing stereoregular boranophosphate siRNAs. This work demonstrates that boranophosphate siRNAs are consistently more effective than siRNAs with the widely used phosphorothioate modification. Furthermore, boranophosphate siRNAs are frequently more active than native siRNA if the center of the antisense strand is not modified. Boranophosphate modification also increases siRNA potency. The finding that boranophosphate siRNAs are at least ten times more nuclease resistant than unmodified siRNAs may explain some of the positive effects of boranophosphate modification. The biochemical properties of boranophosphate siRNAs make them promising candidates for an RNAi-based therapeutic.  相似文献   

3.
The osmotic lysis of pinosomes procedure has been adapted to deliver small interfering RNAs (siRNAs) into cells in culture. Under hypertonic conditions, siRNAs were internalized into pinosomes. A subsequent osmotic shock in hypotonic buffer disrupted the pinosomes and caused the release of siRNAs into the cell cytoplasm. Both steps could be demonstrated directly using fluorescein-labeled siRNAs and confocal laser-scanning microscopy. Uptake by the pinocytosis/osmotic lysis procedure is concentration- and time-dependent. At an siRNA concentration of 0.4 microM, treatment for 40 or 80 min results in silencing efficiencies of 60% and 90%, respectively, after 44 h. A double treatment resulted in approximately equal silencing efficiencies but in reduced viability. This method has been used on a variety of human and murine cell lines including HEK293, HeLa SS6, and SW3T3 cells. Targets such as lamin A/C and Eg5 were effectively silenced. Novel silencing data are provided for Ki67, one of the few reliable prognostic markers for tumor patients. The new procedure avoids certain technical problems encountered with commercial transfection reagents while yielding silencing efficiencies that are comparable to those obtained with liposome-mediated siRNA transfection.  相似文献   

4.
The Piwi-interacting RNA interference pathway plays an important role in suppressing transposable elements in the Drosophila germline. Now, deep sequencing of short RNAs from somatic tissue and cell culture has identified a novel class of endogenous siRNAs that may have a similar role in the soma.  相似文献   

5.
6.
Methods that allow the specific silencing of a desired gene are invaluable tools for research. One of these is based on RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) specifically suppresses the expression of a target mRNA. Recently, it has been reported that RNAi also works in mammalian cells if small interfering RNAs (siRNAs) are used to avoid activation of the interferon system by long dsRNA. Thus, RNAi could become a major tool for reverse genetics in mammalian systems. However, the high cost and the limited availability of the short synthetic RNAs and the lack of certainty that a designed siRNA will work present major drawbacks of the siRNA technology. Here we present an alternative method to obtain cheap and large amounts of siRNAs using T7 RNA polymerase. With multiple transfection procedures, including calcium phosphate co-precipitation, we demonstrate silencing of both exogenous and endogenous genes.  相似文献   

7.
RNA interference (RNAi) is a process in which double-strand RNA (dsRNA) directs the specific degradation of a corresponding target mRNA. The mediators of this process are small dsRNAs, of ~21 bp in length, called small interfering RNAs (siRNAs). siRNAs, which can be prepared in vitro in a number of ways and then transfected into cells, can direct the degradation of corresponding mRNAs inside these cells. Hence, siRNAs represent a powerful tool for studying gene functions, as well as having the potential of being highly specific pharmaceutical agents. Some limitations in using this technology exist because the preparation of siRNA in vitro and screening for siRNAs efficient in RNAi can be expensive and time-consuming processes. Here, we demonstrate that custom oligonucleotide arrays can be efficiently used for the preparation of defined mixtures of siRNAs for the silencing of exogenous and endogenous genes. The method is fast, inexpensive, does not require siRNA optimization and has a number of advantages over methods utilizing enzymatic preparation of siRNAs by digestion of longer dsRNAs, as well as methods based on chemical synthesis of individual siRNAs or their DNA templates.  相似文献   

8.
9.
10.
In RNA interference (RNAi), guide RNAs direct RNA-induced silencing complexes (RISC) to their mRNA targets, thus enabling the cleavage that leads to gene silencing. We describe a strong inverse correlation between the degree of guide-RNA secondary structure formation and gene silencing by small interfering (si)RNA. Unstructured guide strands mediate the strongest silencing whereas structures with base-paired ends are inactive. Thus, the availability of terminal nucleotides within guide structures determines the strength of silencing. A to G and C to U base exchanges, which involve wobble base-pairing with the target but preserve complementarity, turned inactive into active guide structures, thereby expanding the space of functional siRNAs. Previously observed base degenerations among mature micro (mi)RNAs together with the data presented here suggest a crucial role of the guide-RNA structures in miRNA action. The analysis of the effect of the secondary structures of guide-RNA sequences on RNAi efficiency provides a basis for better understanding RNA silencing pathways and improving the design of siRNAs.  相似文献   

11.
siRNAs modified with morpholino nucleoside analogues were synthesized and their biological properties were examined in details. The gene silence abilities of modified siRNAs were correlated to the positions of the modifications, some of which appeared to be more potent than the native siRNA. The 3′-end modification improved the stability of siRNAs in serum significantly. Furthermore, the dose–response and time-course experiments demonstrated that the siRNAs with 3′-end modification have potent gene silence activity at lower concentration and prolonged action time. These favorable properties make the morpholino modified siRNA a potentially useful tool in therapeutic applications.  相似文献   

12.
8-hydroxyquinoline has been previously used as an inhibitor in studies on porphyrin metabolism, where it is thought to act by chelating iron. It is shown that this compound also rapidly inhibits uridine uptake of seedlings or cotyledons of the crucifer Matthiola incana R.Br. RNA synthesis is also affected but the inhibition is not as severe as reported for fission yeast.Abbreviations oligo (dT)-cellulose cellulose with oligo-deoxythymidylic acid attached - poly (A) polyadenylic acid  相似文献   

13.
14.
35S incorporation into bacterial RNA   总被引:1,自引:0,他引:1  
  相似文献   

15.
The syntheses and RNA cleavage efficiencies of a new series of oligonucleotide conjugates of Cu(II)-serinol-terpyridine and 1,3-propanediol are reported. These reagents, termed ribozyme mimics, were designed such that they would yield multiple unpaired RNA residues directly opposite the site of the RNA cleavage catalyst upon ribozyme mimic-RNA duplex formation. This design effect was implemented using the 1,3-propanediol linker 3, which mimics the three-carbon spacing between the 5'- and 3'-hydroxyls of a natural nucleotide. Incorporation of one or more of these 1,3-propanediol linkers at positions directly adjacent to the serinol-terpyridine modification in the ribozyme mimic DNA strand resulted in cleavage at multiple phosphates in a complementary 31-mer RNA target sequence. The linkers effectively created artificial mismatches in the RNA-DNA duplexes, rendering the opposing RNA residues much more susceptible to cleavage via the transesterification/hydrolysis pathway. The RNA cleavage products produced by the various mimics correlated directly with the number and locations of the linkers in their DNA strands, and the most active ribozyme mimic in the series exhibited multiple turnover in the presence of excess 31-mer RNA target.  相似文献   

16.
Short interfering RNAs (siRNAs) variously modified with 4'-thioribonucleosides against the Photinus luciferase gene were tested for their induction of the RNA interference (RNAi) activity in cultured NIH/3T3 cells. Results indicated that modifications at the sense-strand were well tolerated for RNAi activity except for full modification with 4'-thioribonucleosides. However, the activity of siRNAs modified at the antisense-strand was dependent on the position and the number of modifications with 4'-thioribonucleosides. Since modifications of siRNAs with 4'-thioribonucleosides were well tolerated in RNAi activity compared with that of 2'-O-methyl nucleosides, 4'-thioribonucleosides might be potentially useful in the development of novel and effective chemically modified siRNAs.  相似文献   

17.
Poxvirus replication is inhibited by streptovaricin. The most readily observed effect is the inhibition of incorporation of [3H]uridine into viral mRNA, suggesting an inhibition of RNA synthesis. Streptovaricin also inhibits the incorporation of [3H]uridine into cellular RNA but not as severely as viral RNA. On the other hand, [3H]uridine incorporation into the RNA of Semliki Forest virus (SFV), which contains a positive strand RNA genome, does not seem to be inhibited by streptovaricin. The inhibitory effect of streptovaricin is completely reversible after removal of the inhibitor. In addition to inhibiting RNA synthesis, streptovaricin also may inhibit the methylation of cellular RNA. Viral RNA is stable in the presence of streptovaricin.  相似文献   

18.
19.
20.
Synthetic RNAi activators have shown considerable potential for therapeutic application to silencing of pathology-causing genes. Typically these exogenous RNAi activators comprise duplex RNA of approximately 21 bp with 2 nt overhangs at the 3' ends. To improve efficacy of siRNAs, chemical modification at the 2'-OH group of ribose has been employed. Enhanced stability, gene silencing and attenuated immunostimulation have been demonstrated using this approach. Although promising, efficient and controlled delivery of highly negatively charged nucleic acid gene silencers remains problematic. To assess the potential utility of introducing positively charged groups at the 2' position, our investigations aimed at assessing efficacy of novel siRNAs containing 2'-O-guanidinopropyl (GP) moieties. We describe the formation of all four GP-modified nucleosides using the synthesis sequence of Michael addition with acrylonitrile followed by Raney-Ni reduction and guanidinylation. These precursors were used successfully to generate antihepatitis B virus (HBV) siRNAs. Testing in a cell culture model of viral replication demonstrated that the GP modifications improved silencing. Moreover, thermodynamic stability was not affected by the GP moieties and their introduction into each position of the seed region of the siRNA guide strand did not alter the silencing efficacy of the intended HBV target. These results demonstrate that modification of siRNAs with GP groups confers properties that may be useful for advancing therapeutic application of synthetic RNAi activators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号