首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the involvement of nitric oxide (NO) in numerous and diverse physiological processes, site-directed delivery of therapeutic NO in order to minimize unwanted side-effects is necessary. O2-(4-Nitrobenzyl) diazeniumdiolates are designed as substrates for Escherichia coli nitroreductase (NTR), an enzyme that is frequently used to facilitate directed delivery of cytotoxic species to cancers. O2-(4-Nitrobenzyl) diazeniumdiolates are found to be stable in aqueous buffer but are metabolized by NTR to produce NO. A cell viability assay revealed that cytotoxic effects of O2-(4-nitrobenzyl)1-(2-methylpiperidin-1-yl)diazen-1-ium-1,2-diolate (4b) towards two cancer cell lines is significantly enhanced in the presence of NTR suggesting the potential for use of this compound in nitric oxide-based directed prodrug therapy.  相似文献   

2.
We characterized effects of nitric oxide synthase (NOS) substrate L-arginine and classical inhibitors of mammalian NOS on nitric oxide (NO) biosynthesis in probiotic bacteria Lactobacillus plantarum 8P-A3. NO-synthase origin of nitric oxide detected by fluorescent NO indicator 1,2-diaminoanthraquinone (DAA) was confirmed by induction of NO production by exogenous L-arginine. None of the used inhibitors of three isoforms of mammalian NOSs (L-NAME, L-NIL, nNOS inhibitor I) showed significant inhibitory effect of lactobacillar NO-synthase activity.  相似文献   

3.
We found that the cytosol of rat peritoneal polymorphonuclear neutrophils contains factor(s) that can stabilize an unstable enzyme, nitric oxide synthetase, in the cytosol. This enzyme has been purified to a single protein from the cytosol. Its half-life was 3 hours at 4 degrees C and was prolonged to greater than 24 hours by the stabilizing factor in the cytosol. The molecular weight of the stabilizing factor was greater than 100,000. Its activity was lost by the treatment with heating or alkali for 1 min or with acid for 5 min. It did not adhere to the carboxymethyl or diethylaminoethyl column at neutral pH. This stabilizing factor(s) may play a role in the regulation of the nitric oxide synthetase.  相似文献   

4.
The reaction of yeast Cu-MT with nitric oxide (NO) was examined. A release of copper from the Cu(I)-thiolate clusters of the protein by this remarkably important reagent was observed in vitro. The characteristic spectroscopic signals of the Cu(I)-thiolate chromophores levelled off in the presence of a two-fold molar excess of NO expressed per equivalent of thionein-copper as monitored by UV-electronic absorption, circular dichroism and luminescence emission. At the same time all of the copper became EPR detectable. The oxidized metal ions could easily be removed from the protein moiety by gelfiltration. The reversibility of the copper releasing process is of special interest. The specific fluorescence and dichroic properties of the previously demetallized protein could be recovered up to 85% under reductive conditions. Moreover, no difference in the electrophoretic behaviour was seen compared to the untreated Cu-MT. Thus, NO may act as a potent metabolic source for the transient copper release from Cu-MT. In the course of an oxidative burst this highly Fenton active copper is able to improve the efficacy of biological defence mechanisms.  相似文献   

5.
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O2, is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.  相似文献   

6.
7.
8.
Acetylcholine (ACh) is one of the main signals regulating nitric oxide synthase (NOS) expression and nitric oxide (NO) biosynthesis in mammals. However, few comparative studies have been performed on the role of ACh on NOS activity in non-mammalian animals. We have therefore studied the cholinergic control of NOS in the snail Helix pomatia and compared the effects of ACh on NO synthesis in the enteric nervous system of the snail and rat. Analyses by the NADPH-diaphorase reaction, immunocytochemistry, purification with ion-exchange chromatography, Western-blot, and quantitative polymerase chain reaction have revealed the expression of neuronal NOS in the rat intestine and of a 60-kDa subunit of NOS in the enteric nerve plexus of H. pomatia. In H. pomatia, quantification of the NO-derived nitrite ions has established that NO formation is confined to the NOS-containing midintestine. Nitrite production can be elevated by L-arginine but inhibited by Nω-nitro-L-arginine. In rats, ACh moderately elevates nitrite production, whereas ACh, the nicotinic receptor agonists (nicotine, acetyl thiocholine iodide, metacholine) and the cholinesterase inhibitor eserine reduce enteric nitrite formation in snails. The nicotinic receptor antagonist tubocurarine also provokes nitrite liberation, whereas the muscarinic receptor agonists or antagonists have no significant effect in snails. In the presence of EDTA or tetrodotoxin, ACh fails to inhibit nitrite production. In pharmacological studies, we have found that ACh contracts the midintestinal muscles and, in snails, simultaneously reduces the antagonistic muscle relaxant effect of L-arginine. Our experiments provide the first evidence for an inhibitory regulation of neuronal NO synthesis by ACh in an invertebrate species. This article is dedicated to Dr. Gábor Hollósi on the 50th anniversary of his graduation and being a teacher at the University of Debrecen.  相似文献   

9.
Data regarding the interrelation of nitric oxide (NO) content in roots of 3-day-old etiolated pea seedlings and their growth under different concentrations of N-containing compounds were obtained. The concentration of exogenous compounds (sodium nitroprusside SNP, KNO3, NaNO2, L-arginine) rendering an inhibiting effect on the growth of roots were established, and the NO content in roots was determined at these concentration. It was shown that the inhibition of growth and highest NO content in the roots was determined with SNP (4 mM) and NaNO2 (2 mM) during 24 h exposition of seedlings. This dependence was not established in combinations with KNO3 (20 mM) and L-arginine (4 mM). We established that a NO scavenger, hemoglobin (4 μM), fully or partially removed the toxic effect of SNP, nitrate, and nitrite on growth. The effect of NO on the growth and the participation of N-containing compounds in generation of NO in roots of pea seedlings is discussed.  相似文献   

10.
Four novel porphyrins containing nitric oxide (NO) donors were synthesized, and the structures of all the products were characterized by IR, UV–vis, 1H NMR, and elementary analysis. Interestingly, these new compounds not only were able to release NO, but also showed cancer cell-oriented accumulation. Higher accumulation of these new porphyrins containing NO donors in BEL-7402 liver cancer cells than in L-02 liver normal cells was corroborated by UV–vis spectroscopy. The biological activity of these porphyrins against BEL-7402 liver cancer cells was tested with a MTT assay. The studies indicated that they had more effective killing of BEL-7402 liver cancer cells than that of L-02 liver normal cells, and they had similar activity against MCF-7 breast cancer cells when compared to 5-fluorouracil in the absence of light.  相似文献   

11.
In this study, we examined the regulation by putrescine, spermidine and spermine of nitric oxide (NO) biosynthesis in Arabidopsis thaliana seedlings. Using a fluorimetric method employing the cell-impermeable NO-binding dye diaminorhodamine-4M (DAR-4M), we observed that the polyamines (PAs) spermidine and spermine greatly increased NO release in the seedlings, whereas arginine and putrescine had little or no effect. Spermine, the most active PA, stimulated NO release with no apparent lag phase. The response was quenched by addition of 2-aminoethyl-2-thiopseudourea (AET), an inhibitor of the animal nitric oxide synthase (NOS) and plant NO biosynthesis, and by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO), an NO scavenger. By fluorescence microscopy, using the cell-permeable NO-binding dye diaminorhodamine-4M acetoxymethyl ester (DAR-4M AM), we observed that PAs induced NO biosynthesis in specific tissues in Arabidopsis seedlings. Spermine and spermidine increased NO biosynthesis in the elongation zone of the Arabidopsis root tip and in primary leaves, especially in the veins and trichomes, while in cotyledons little or no effect of PAs beyond the endogenous levels of NO-induced fluorescence was observed. We conclude that PAs induce NO biosynthesis in plants.  相似文献   

12.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

13.
In order to find new compounds with neuroprotective activity and NOS-I/NOS-II selectivity, we have designed, synthesized, and characterized 14 new NOS inhibitors with an indazole structure. The first group corresponds to 4,5,6,7-tetrahydroindazoles (48), the second to the N-methyl derivatives (912) of 7-nitro-1H-indazole (1) and 3-bromo-7-nitro-1H-indazole (2), and the latter to 4,5,6,7-tetrafluoroindazoles (1317). Compound 13 (4,5,6,7-tetrafluoro-3-methyl-1H-indazole) inhibited NOS-I by 63% and NOS-II by 83%. Interestingly, compound 16 (4,5,6,7-tetrafluoro-3-perfluorophenyl-1H-indazole) inhibited NOS-II activity by 80%, but it did not affect to NOS-I activity. Structural comparison between these new indazoles further supports the importance of the aromatic indazole skeleton for NOS inhibition and indicate that bulky groups or N-methylation of 1 and 2 diminish their effect on NOS activity. The fluorination of the aromatic ring increased the inhibitory potency and NOS-II selectivity, suggesting that this is a promising strategy for NOS selective inhibitors.  相似文献   

14.
15.
* Here, cytokinin-induced nitric oxide (NO) biosynthesis and cytokinin responses were investigated in Arabidopsis thaliana wild type and mutants defective in NO biosynthesis or cytokinin signaling components. * NO release from seedlings was quantified by a fluorometric method and, by microscopy, observed NO biosynthesis as fluorescence increase of DAR-4M AM (diaminorhodamine 4M acetoxymethyl ester) in different tissues. * Atnoa1 seedlings were indistinguishable in NO tissue distribution pattern and morphological responses, induced by zeatin, from wild-type seedlings. Wild-type and nia1,2 seedlings, lacking nitrate reductase (NR), responded to zeatin with an increase within 3 min in NO biosynthesis so that NR does not seem relevant for rapid NO induction, which was mediated by an unknown 2-(2-aminoethyl)2-thiopseudourea (AET)-sensitive enzyme and was quenched by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxy-3-oxide (PTIO). Long-term morphological responses to zeatin were severely altered and NO biosynthesis was increased in nia1,2 seedlings. As cytokinin signaling mutants we used the single-receptor knockout cre1/ahk4, three double-receptor knockouts (ahk2,3, ahk2,4, ahk3,4) and triple-knockout ahp1,2,3 plants. All cytokinin-signaling mutants showed aberrant tissue patterns of NO accumulation in response to zeatin and altered morphological responses to zeatin. * Because aberrant NO biosynthesis correlated with aberrant morphological responses to zeatin the hypothesis was put forward that NO is an intermediate in cytokinin signaling.  相似文献   

16.
We examined the roles of nitric oxide (NO) and NO synthase (NOS) isozymes in the healing of indomethacin-induced small intestinal ulcers in rats. Animals were given indomethacin (10 mg/kg, s.c.) and killed 1, 4 and 7 days after the administration. Indomethacin (2 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME: a nonselective NOS inhibitor: 10 mg/kg) and aminoguanine (a relatively selective iNOS inhibitor: 20 mg/kg) were given s.c. once daily for 6 days, the first 3 days or the last 3 days during a 7-day experimental period. Both indomethacin and L-NAME significantly impaired healing of these lesions, irrespective of whether they were given for 6 days, first 3 days or last 3 days. The healing was also impaired by aminoguanine given for the first 3 days but not for the last 3 days. Expression of iNOS mRNA in the intestine was up-regulated after ulceration, persisting for 2 days thereafter, and the Ca(2+)-independent iNOS activity also markedly increased with a peak response during 1-2 days after ulceration. Vascular content in the ulcerated mucosa as measured by carmine incorporation was decreased when the healing was impaired by indomethacin and L-NAME given for either the first or last 3 days as well as aminoguanidine given for the first 3 days. These results suggest that endogenous NO plays a role in healing of intestinal lesions, in addition to prostaglandins, yet the NOS isozyme mainly responsible for NO production differs depending on the stage of healing: iNOS in the early stage and cNOS in the late stage.  相似文献   

17.
During CNS injury and diseases, nitric oxide (NO) is released at a high flux rate leading to formation of peroxynitrite (ONOO) and other reactive nitrogenous species, which nitrate tyrosines of proteins to form 3-nitrotyrosine (3NY), leading to cell death. Previously, we have found that motor neurons exposed to low levels of NO become resistant to subsequent cytotoxic NO challenge; an effect dubbed induced adaptive resistance (IAR). Here, we report IAR mitigates, not only cell death, but 3NY formation in response to cytotoxic NO. Addition of an NO scavenger before NO challenge duplicates IAR, implicating reactive nitrogenous species in cell death. Addition of uric acid (a peroxynitrite scavenger) before cytotoxic NO challenge, duplicates IAR, implicating peroxynitrite, with subsequent 3NY formation, in cell death, and abrogation of this pathway as a mechanism of IAR. IAR is dependent on the heme-metabolizing enzyme, heme oxygenase-1 (HO1), as indicated by the elimination of IAR by a specific HO1 inhibitor, and by the finding that neurons isolated from HO1 null mice have increased NO sensitivity with concomitant increased 3NY formation. This data indicate that IAR is an HO1-dependent mechanism that prevents peroxynitrite-mediated NO toxicity in motor neurons, thereby elucidating therapeutic targets for the mitigation of CNS disease and injury.  相似文献   

18.
Pagliaro P 《Life sciences》2003,73(17):2137-2149
The radical gas nitric oxide (NO) is implicated in an enormous number of biological function both in physiological and pathological conditions. Often it is not clear if it plays a deleterious or beneficial role. Here briefly, are analyzed some of the reasons of this multitude of effects. Emphasis is given to factors influencing NO formation and to the type and quantity of radicals formed by nitric oxide synthase. In particular, a comparison between the biological effects of nitroxyl anion (HNO/NO(-)) and nitric oxide NO(.) is considered. These redox siblings often exhibit orthogonal behavior in physiological and pathological conditions. In the light of the multitude of effects of NO, the role of this gas, their siblings and their derivatives in cardiac ischemic preconditioning scenario is more extensively analyzed.  相似文献   

19.
A number of oroxylin A analogs were prepared and evaluated for their inhibitory activities against iNOS-mediated nitric oxide (NO) production from LPS-stimulated BV2 cells. The analogs were synthesized from purchased 2'-hydroxy-4,5,6-trimethoxyacetophenone and aldehydes in 3 steps. Among the tested compounds, several analogs (3b, 3c, 3d, 3f) exhibited strong inhibitory activities. Especially, the analog with 4-nitrophenyl group (3b) showed stronger inhibitory activity (IC(50)=4.73 μM) than that of wogonin (IC(50)=7.80 μM).  相似文献   

20.
It has been reported that concentrations of neopterin in the urine are changed according to the host immunological conditions. In the present study, we measured urinary concentration of neopterin in patients with malignant hematological disorders and investigated the relationship between urinary neopterin levels and laboratory indices for cellular immunity. Urine neopterin levels were correlated with serum sIL-2R levels in the patients with malignant lymphoma, and inversely correlated with lymphocyte reactivity with ConA in the patients with acute myelocytic leukemia. However, no significant correlation was observed between urine neopterin levels and lymphocyte reactivity with phytohemagglutinin and pokeweed mitogen, CD4/8 ratio, CD56+ 16+ subset or serum IFN-gamma levels. In the patients with malignant lymphoma, parallel changes in serum sIL-2R and urine neopterin were observed. The presented results suggest that urine neopterin levels are related to the activation of T cells in malignant lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号