首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duodenal cytochrome b (Dcytb) is a transmembrane oxidoreductase protein found in apical membranes of duodenal enterocytes, as well as human erythrocytes, with the capacity to transport electrons donated by cytosolic ascorbate to extracellular electron receptors such as Fe(III), dehydroascorbate, or molecular O2. We have investigated the capacity of the flavonoid quercetin to act as an electron donor for Dcytb in a manner similar to that of ascorbate by observing the reduction of extracellular Fe(III) to Fe(II) in either Madin–Darby canine kidney (MDCK) cells overexpressing Dcytb (Dcytb+) or Dcytb-null MDCK cells. In Dcytb+ cells there is a saturable increase in extracellular Fe(III) reduction in response to increasing intracellular quercetin concentrations (Km = 6.53 ± 1.57 μM), in addition to a small linear response, whereas in Dcytb-null cells there is only a small linear increase in extracellular Fe(III) reduction. No extracellular Fe(III) reduction occurs in Dcytb-null cells when the cells are preloaded with ascorbate. Flavonoids such as quercetin at their physiological concentrations can therefore function as modulators of ferric reductases, enhancing the import of Fe(II) and also providing extracellular reducing potential.  相似文献   

2.
Transferrin's mechanism of interaction with receptor 1   总被引:1,自引:0,他引:1  
The kinetics and thermodynamics of the interactions of transferrin receptor 1 with holotransferrin and apotransferrin in neutral and mildly acidic media are investigated at 37 degrees C in the presence of CHAPS micelles. Receptor 1 interacts with CHAPS in a very fast kinetic step (<1 micros). This is followed in neutral media by the interaction with holotransferrin which occurs in two steps after receptor deprotonation, with a proton dissociation constant (K(1a)) of 10.0 +/- 1.5 nM. The first step is detected by the T-jump technique and is associated with a molecular interaction between the receptor and holotransferrin. It occurs with a first-order rate constant (k(-1)) of (1.6 +/- 0.2) x 10(4) s(-1), a second-order rate constant (k(1)) of (3.20 +/- 0.2) x 10(10) M(-1) s(-1), and a dissociation constant (K(1)) of 0.50 +/- 0.07 microM. This step is followed by a slow change in the conformation with a relaxation time (tau(2)) of 3400 +/- 400 s and an equilibrium constant (K(2)) of (4.6 +/- 1.0) x 10(-3) with an overall affinity of the receptor for holotransferrin [(K'1)(-1)] of (4.35 +/- 0.60) x 10(8) M(-1). Apotransferrin does not interact with receptor 1 in neutral media, between pH 4.9 and 6, it interacts with the receptor in two steps after a receptor deprotonation (K(2a) = 2.30 +/- 0.3 microM). The first step occurs in the range of 1000-3000 s. It is ascribed to a slow change in the conformation which rate-controls a fast interaction between apotransferrin and receptor 1 with an overall affinity constant [(K(3))(-1)] of (2.80 +/- 0.30) x 10(7) M(-1). These results imply that receptor 1 probably exists in at least two forms, the neutral species which interacts with holotransferrin and not with apotransferrin and the acidic species which interacts with apotransferrin. At first, the interaction of the neutral receptor with holotransferrin is extremely fast. It is followed by the slow change in conformation, which leads to an important stabilization of the thermodynamic structure. In the acidic media of the endosome, the interaction of apotransferrin with the acidic receptor is sufficiently strong and rate-controlled by a very slow change in conformation which allows recycling back to the plasma membrane.  相似文献   

3.
A series of artemisinin dimers incorporating a metabolically stable C-10 carba-linkage have been prepared, several of which show remarkable in vitro antimalarial activity (as low as 30 pM) versus Plasmodium falciparum and in vitro anticancer activity in the micromolar to nanomolar range versus HL-60 cell lines.  相似文献   

4.
《Process Biochemistry》2010,45(12):1949-1953
The influence of iron-complexed ehylenediaminetetraacetic acid (EDTA) was studied on nitric oxide (NO) removal using photoautotropic cultivation of green alga Scenedesmus. Fe(II)EDTA is an active solubilization agent of NO in water, while the oxidized Fe(III)EDTA is not. When a gas mixture containing 300 ppm NO was treated through the Scenedesmus culture containing 5 mM Fe(II)EDTA, a constant level of 80–85% NO removal was achieved for a prolonged period. A certain fraction of Fe(II)EDTA remained without being oxidized to Fe(III)EDTA because of the existence of reversible oxidation–reduction balance between Fe(II)EDTA and Fe(III)EDTA. When Fe(III)EDTA was added to the culture instead of Fe(II)EDTA, Fe(II) was generated via reduction of Fe(III), resulting in the increase of NO removal and cell density. This was possible because of the generated Fe(II)EDTA which contributed to the dissolution of NO. Therefore, a long-term NO removal was possible with Fe(III)EDTA, as well as with Fe(II)EDTA, in the present microalgal system. The supplementation of free EDTA was necessary to extend the period of NO removal because EDTA is consumed by biodegradation while the decrease of total iron content was not significant.  相似文献   

5.
In this study, the aquatic macrophyte Ceratophyllum demersum L. (coontail or hornwort) was tested for its efficiency of arsenic (As) uptake under laboratory conditions. Our results revealed that the solution pH had a significant effect on As accumulation by C. demersum (p < 0.001). The accumulation was highest at pH 5 and decreased as pH values increased. Plants that were exposed to various concentrations of arsenite (As(III)) for 24 and 48 h, exhibited tolerance and toxic responses, respectively. As accumulation by C. demersum depended on the concentrations of As(III) and the duration of exposure (p < 0.001). At 40 μM after 24 h, plants accumulated 227.5 μg As g−1 dw and showed no visible symptoms of toxicity. However, after 48 h, As level reached 302.4 μg g−1 dw and biomass production decreased significantly. Toxic effects were evident by plant necrosis and negative biomass production, leading to a decrease in the amount of accumulated As. Also, the addition of iron (Fe) into the nutrient solutions (0.18 mM) had contrasting effects on the uptake of 2 As species – the uptake of As(III) was enhanced by the presence of Fe, but the uptake of arsenate (As(V)) was considerably inhibited.  相似文献   

6.
7.
In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10–50 mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20–100 mV s−1) in 30 mM of glucose solution prepared in 0.3 M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50 ± 2 mA cm−2 at a scan rate of 100 mV s−1 for the oxidation of 30 Mm glucose is achieved.  相似文献   

8.
Estimates of the net equilibrium binding constants for [(H2O)(NH3)5RuII]2+, [Cl(NH3)5RuIII]2+, cis-[(H2O)2(NH3)4RuII]2+ and cis-[Cl2(NH3)4RuIII]+ with apotransferrin (Tf) and holotransferrin (Fe2Tf) suggests that RuIII, but not RuII complexes bind with a higher affinity to the iron binding sites. Several other presumably histidyl imidazole sites bind with approximately the same affinity (Keff = 10(2) to 10(3) M(-1) to both RuII and RuIII. Compared to HeLa cells, an order of magnitude higher level of nuclear DNA binding ([Ru]DNA/[P]DNA) was required to achieve the same level of toxicity in Jurkat Tag cells, which probably relates to the substantially higher levels of cis-[Cl2(NH3)4Ru]+ needed to inhibit 50% of the cell growth in the Jurkat Tag cell line. Against Jurkat Tag cells, the toxicity of the pentaammineruthenium(III) group is enhanced by approximately two orders of magnitude upon binding primarily to the Fe-sites in apotransferrin, whereas the toxicity of the tetraammineruthenium(III) moiety is only marginally increased. Binding to Fe2Tf does not increase the toxicity of either group. Significant dissociation over 24 h of the ammineruthenium(III) ions from apotransferrin requires reduction to RuII.  相似文献   

9.
《BBA》2013,1827(10):1141-1147
The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe–4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe–4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe–4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe–4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (> 100 mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh.  相似文献   

10.
Antitumor and antiviral properties of the antimalaria drug artemisinin from Artemisia annua have been reported. Novel artemisinin derivatives (AD1–AD8) have been synthesized and evaluated using in vitro models of liver/colon cancer and viral hepatitis B and C. Cell viability assays after treating human cell lines from hepatoblastoma (HepG2), hepatocarcinoma (SK-HEP-1), and colon adenocarcinoma (LS174T) with AD1–AD8 for a short (6 h) and long (72 h) period revealed that AD5 combined low acute toxicity together with high antiproliferative effect (IC50 = 1–5 μM). Since iron-mediated activation of peroxide bond is involved in artemisinin antimalarial activity, the effect of iron(II)-glycine sulfate (ferrosanol) and iron(III)-containing protoporphyrin IX (hemin) was investigated. Ferrosanol, but not hemin, enhanced antiproliferative activity of AD5 if the cells were preloaded with AD5, but not if both compouds were added together. Five derivatives (AD1 > AD2 > AD7 > AD3 > AD8) were able to inhibit the cytopathic effect of bovine viral diarrhoea virus (BVDV), a surrogate in vitro model of hepatitis C virus (HCV), used here to evaluate the anti-Flaviviridae activity. Moreover, AD1 and AD2 inhibited the release of BVDV-RNA to the culture medium. Co-treatment with hemin or ferrosanol resulted in enhanced anti-Flaviviridae activity of AD1. In HepG2 cells permanently infected with hepatitis B virus (HBV), AD1 and AD4, at non-toxic concentrations for the host cells were able to reduce the release of HBV-DNA to the medium. In conclusion, high pharmacological interest deserving further evaluation in animal models has been identified for novel artemisinin-related drugs potentially useful for the treatment of liver cancer and viral hepatitis B and C.  相似文献   

11.
With the expanded use of the combination of artesunate (AS) and amodiaquine (AQ) for the treatment of falciparum malaria and the abundance of products on the market, comes the need for rapid and reliable bioanalytical methods for the determination of the parent compounds and their metabolites. While the existing methods were developed for the determination of either AS or AQ in biological fluids, the current validated method allows simultaneous extraction and determination of AS and AQ in human plasma. Extraction is carried out on Supelclean LC-18 extraction cartridges where AS, its metabolite dihydroartemisinin (DHA) and the internal standard artemisinin (QHS) are separated from AQ, its metabolite desethylamodiaquine (DeAQ) and the internal standard, an isobutyl analogue of desethylamodiaquine (IB-DeAQ). AS, DHA and QHS are then analysed using Hypersil C4 column with acetonitrile–acetic acid (0.05 M adjusted to pH 5.2 with 1.00 M NaOH) (42:58, v/v) as mobile phase at flow rate 1.50 ml/min. The analytes are detected with an electrochemical detector operating in the reductive mode. Chromatography of AQ, DeAQ and IB-DeAQ is carried out on an Inertsil C4 column with acetonitrile–KH2PO4 (pH 4.0, 0.05 M) (11:89, v/v) as mobile phase at flow rate 1.00 ml/min. The analytes are detected by an electrochemical detector operating in the oxidative mode. The recoveries of AS, DHA, AQ and DeAQ vary between 79.1% and 104.0% over the concentration range of 50–1400 ng/ml plasma. The accuracies of the determination of all the analytes are 96.8–103.9%, while the variation for within-day and day-to-day analysis are <15%. The lower limit of quantification for all the analytes is 20 ng/ml and limit of detection is 8 ng/ml. The method is sensitive, selective, accurate, reproducible and suited particularly for pharmacokinetic study of AS–AQ drug combination and can also be used to compare the bioavailability of different formulations, including a fixed-dose AS–AQ co-formulation.  相似文献   

12.
《Process Biochemistry》2010,45(10):1707-1712
The electrochemical behavior of guanine and adenine on the graphene and Nafion composite film modified glassy carbon electrode was investigated by differential pulse voltammetry (DPV). The results indicated that the modified electrode exhibited an excellent electrocatalytic activity towards the oxidation of guanine and adenine, testified by the increased oxidation peak current and decreased oxidation potential. The experimental conditions were optimized. The separation of the two oxidation peaks was 0.364 V in 0.1 M pH 4.4 acetate buffer solution (ABS). Based on this, a novel electrochemical method was proposed to simultaneously determine guanine and adenine with the detection limit of 0.58 (guanine) and 0.75 (adenine) μM (S/N = 3). The proposed method was applied to determine guanine and adenine in milk powder, urine and herring sperm DNA samples with satisfactory results. The value of (G + C)/(A + T) in herring sperm DNA was calculated to be 0.8065. The fabricated electrode showed excellent reproducibility, stability and anti-interference.  相似文献   

13.
A series of artemisinin–spermidine conjugates designed to utilise the upregulated polyamine transporter found in cancer cells have been prepared. These conjugates were evaluated against human promyelocytic leukaemia HL-60 cells and chloroquine-sensitive 3D7 Plasmodium falciparum and several show promising anticancer and antimalarial activity. Although some limitations in this vector-based approach are apparent, a number of high potency Boc-protected analogues were identified with activity against malaria parasites as low as 0.21 nM.  相似文献   

14.
Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT–loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72 h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT–loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p < 0.01) and IL-1β (p < 0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p < 0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.  相似文献   

15.
Leifsonia xyli HS0904 can stereoselectively catalyze the bioreduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to its corresponding alcohol, which is a valuable chiral intermediate in the pharmaceuticals. In this study, a new carbonyl reductase derived from L. xyli HS0904 was purified and its biochemical properties were determined in detail. The carbonyl reductase was purified by 530-fold with a specific activity of 13.2 U mg−1 and found to be a homodimer with a molecular mass of 49 kDa, in which the subunit molecular-weight was about 24 kDa. The purified enzyme exhibited a maximum enzyme activity at 34 °C and pH 7.2, and retained over 90% of its initial activity at 4 °C and pH 7.0 for 24 h. The addition of various additives, such as Ca2+, Mg2+, Mn2+, l-cysteine, l-glutathione, urea, PEG 1000 and PEG 4000, could enhance the enzyme activity. The maximal reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) of the purified carbonyl reductase for BTAP and NADH were confirmed as 33.9 U mg−1, 0.383 mM and 69.9 U mg−1, 0.412 mM, respectively. Furthermore, this enzyme was found to have a broad spectrum of substrate specificity and can asymmetrically catalyze the reduction of a variety of ketones and keto esters.  相似文献   

16.
A study of the electrochemical behavior of a series of antimetastatic mono- and di-ruthenium complexes, namely [Na][trans-RuIIICl4(DMSO)(L)] and [Na]2[{trans-RuIIICl4(DMSO)}2(μ-L)], L = pyrazine (pyz), pyrimidine (pym), 4,4′-bipyridine (bipy), and 1,2-bis-(4-pyridyl)ethylene (etbipy), is reported. The results obtained show that in all dimeric Ru(III) complexes linked by heterocyclic non-chelating N-donor bridges, the two redox centers behave independently (with no remarkable electrochemical interaction), thus conferring no advantage in the likely hypothesis they act as pro-drugs (activation by reduction). Moreover, electrochemical evaluation of interaction between albumin and the title complexes confirms that this protein can act as the vehicle for drugs of this type in blood.  相似文献   

17.
18.
《Process Biochemistry》2010,45(12):1912-1915
Production of pyruvate from lactate through biocatalysis is a valuable process for its simple composition of reaction system and convenience of recovery. Biocatalyst with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) can effectively catalyze lactate into pyruvate. To reduce the cost of biocatalyst preparation caused by indispensable lactate addition, the mutants with constitutive iLDH of Pseudomonas sp. XP-M2 were screened. Mutant XP-LM exhibited high iLDHs activities in minimal salt medium with cheap substrate glucose as the carbon source. The biocatalyst (8.2 g dry cell weight l−1) containing 169.8 U l−1 l-iLDH was prepared with 20 g 1−1 glucose. The cost-effective biocatalyst prepared from the mutant XP-LM could efficiently catalyze lactate into pyruvate with high yield (0.961 mol mol−1). Based on the different thermostability of d-iLDH and l-iLDH in the biocatalyst, whole cells of the strain might also have the potential in production of pyruvate and d-lactate from racemic lactate.  相似文献   

19.
Artemisinin from Artemisia annua has become one of the most important drugs for malaria therapy. Its biosynthesis proceeds via amorpha-4,11-diene, but it is still unknown whether the isoprenoid precursors units are obtained by the mevalonate pathway or the more recently discovered non-mevalonate pathway. In order to address that question, a plant of A. annua was grown in an atmosphere containing 700 ppm of 13CO2 for 100 min. Following a chase period of 10 days, artemisinin was isolated and analyzed by 13C NMR spectroscopy. The isotopologue pattern shows that artemisinin was predominantly biosynthesized from (E,E)-farnesyl diphosphate (FPP) whose central isoprenoid unit had been obtained via the non-mevalonate pathway. The isotopologue data confirm the previously proposed mechanisms for the cyclization of (E,E)-FPP to amorphadiene and its oxidative conversion to artemisinin. They also support deprotonation of a terminal allyl cation intermediate as the final step in the enzymatic conversion of FPP to amorphadiene and show that either of the two methyl groups can undergo deprotonation.  相似文献   

20.
Dyslipidemia in patients with glycogen storage disease types Ia (GSD Ia) and III (GSD III) does not lead to premature atherosclerosis. The aim of this study was to investigate the association among serum copper (Cu), zinc (Zn), iron (Fe), and selenium (Se) concentrations, and their carrier proteins: ceruloplasmin, albumin, and related antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), and arylesterase (ARYL)] in 20 GSD Ia and 14 III patients compared to age and sex matched 20 healthy subjects. Erythrocyte oxidative stress was measured by erythrocyte thiobarbituric acid reactive substances (eTBARSs). Hypertriglyceridemia [333 (36–890) mg/dL] in GSD Ia and hypercholesterolemia with elevated LDL-cholesterol [188 (91–313) mg/dL] and decreased HDL-cholesterol [32(23–58) mg/dL] levels in GSD III were found. Serum Cu, Fe, and Zn showed no significant differences between groups. However, Se 60 (54–94), 81 (57–127) μg/L, ceruloplasmin 21 (10–90), 27 (23–65) μg/L, and albumin 2.4 (1.7–5.1), 2.8 (1.8–4.06) g/dL levels were decreased in GSD Ia and III groups, respectively, in comparison with the controls [Se 110 (60–136) μg/L, ceruloplasmin 72 (32–94) μg/L, and albumin 4.4 (4–4.8) g/dL)]. In spite of high oxidative stress in erythrocyte detected by elevated eTBARS/Hb levels in GSD group [674.8 (454.6–948.2) for GSD Ia, 636.3 (460.9–842.1) for GSD III, and 525.6 (449.2–612.6)], the activities of CAT, SOD, ARYL, and PON in GSD patients were not different from the controls. GPx activity was decreased in GSD Ia [3.7 (1.8–7.1) U/mL] and GSD III [4.2 (2.2–8.6) U/mL] compared with healthy controls [7.1 (2.9–16.2) U/mL].In conclusion, this study supplied the data for trace elements, their carrier, and antioxidative enzymes in the patients with GSD Ia and III. The trace elements and anti-oxidative enzyme levels in GSD patients failed to explain the atherosclerotic escape phenomenon reported in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号