首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study illustrates the benefits of Celite® supported lipase sol–gels for the transesterification of triolein to produce methyl oleate. A ping–pong bi–bi kinetic model was developed and validated taking into account the inhibition effects of methanol and glycerol as well as the effect of temperature. Although initial reaction rate models are useful for predicting the kinetics in the absence of products, a kinetic model beyond the initial conditions that considers glycerol inhibition is important. The model developed was consistent with the experimental data (R2 = 0.95) predicting an increase in methyl oleate production with increasing methanol concentration up to an optimal range of 1.3 M to 2.0 M depending on the temperature. In general, increasing the temperature increased the initial reaction rate for the immobilized lipase over the temperature range of 40–60 °C. Based on the kinetic constants, the maximum velocity of the reverse reaction is about 25% slower than that of the forward reaction and glycerol inhibition has a more significant effect on the reaction kinetics than methanol inhibition. The model developed would be useful for understanding the effects of methanol and glycerol inhibition as well as temperature on the production of methyl oleate using lipase-mediated enzymatic transesterification.  相似文献   

2.
The main byproduct of biodiesel production is glycerol. Here, crude glycerol – byproduct of biodiesel industry – was evaluated as sole carbon source in rhamnolipids production by Pseudomonas aeruginosa. The optimal concentration of crude glycerol and sodium nitrate was assessed using response surface methodology, resulting in about 40–50 mg/L.h of rhamnolipids, which was about four times higher than previously reported in the literature. Fermentation parameters were similar to those observed with commercial glycerol as sole carbon source. The optimized medium was suitable for production using simple (22.9 mg/L.h) and fed-batch (32.4 mg/L.h) fermentation in oxygen-controlled bioreactor without foaming formation. Composition and relative abundance of rhamnolipid congeners showed that crude glycerol had little effect on metabolic pathways involved in their production. CMC values were approximately 130 mg/L and 230–260 mg/L for rhamnolipids from crude and commercial glycerol fermentation, respectively, which were about 2–6 times lower than CMC values of synthetic surfactants.  相似文献   

3.
To improve the growth of recombinant Pichia pastoris with a phenotype of MutS and expression of angiostatin, the effects of glycerol, sorbitol, acetate and lactic acid which were, respectively, added together with methanol in the expression phase, were studied in a 5-l fermentor. Methanol concentration was automatically controlled at 5 g/l by a methanol monitor and control system, while the feeding of the other carbon source was manually adjusted. The angiostatin production level was 108 mg/l when glycerol was added at an initial rate of 2.3 g/h and gradually increased to 9.9 g/h within an induction period of 96 h. The angiostatin concentration was 141 mg/l as sorbitol was used, while only 52 mg/l were obtained on acetate. The highest angiostatin production of 191 mg/l was achieved as lactic acid was used; whose feeding rate was gradually increased from 2.6 to 11.3 g/h. Lactic acid accumulated during the induction phase and reached 6.3 g/l at the end of fermentation. However, the accumulation of lactic acid did not interfere with angiostatin production, indicating that lactic acid to be a non-repressive carbon source. The average productivity and specific productivity of angiostatin obtained on lactic acid and methanol were, respectively, 2.96 and 0.044 mg/(g h), 1.7- and 2.5-fold of those obtained in the fermentation fed with glycerol and methanol.  相似文献   

4.
《Process Biochemistry》2007,42(11):1537-1545
Crude glycerol is the primary by-product in the biodiesel industry, which is too costly to be purified into to higher quality products used in the health and cosmetics industries. This work investigated the potential of using the crude glycerol to produce docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the microalga Schizochytrium limacinum. The results showed that crude glycerol supported alga growth and DHA production, with 75–100 g/L concentration being the optimal range. Among other medium and environmental factors influencing DHA production, temperature, trace metal (PI) solution concentration, ammonium acetate, and NH4Cl had significant effects (P < 0.1). Their optimal values were determined 30 mL/L of PI, 0.04 g/L of NH4Cl, 1.0 g/L of ammonium acetate, and 19.2 °C. A highest DHA yield of 4.91 g/L with 22.1 g/L cell dry weight was obtained. The results suggested that biodiesel-derived crude glycerol is a promising feedstock for production of DHA from heterotrophic algal culture.  相似文献   

5.
Crude glycerol, generated as waste by-product in biodiesel production process, has been considered as an important carbon source for converting to value-added bioproducts recently. Free fatty acids (FFAs) can be used as precursors for the production of biofuels or biochemicals. Microbial biosynthesis of FFAs can be achieved by introducing an acyl–acyl carrier protein thioesterase into Escherichia coli. In this study, the effect of metabolic manipulation of FFAs synthesis cycle, host genetic background and cofactor engineering on FFAs production using glycerol as feed stocks was investigated. The highest concentration of FFAs produced by the engineered stain reached 4.82 g/L with the yield of 29.55% (g FFAs/g glycerol), about 83% of the maximum theoretical pathway value by the type II fatty acid synthesis pathway. In addition, crude glycerol from biodiesel plant was also used as feedstock in this study. The FFA production was 3.53 g/L with a yield of 24.13%. The yield dropped slightly when crude glycerol was used as a carbon source instead of pure glycerol, while it still can reach about 68% of the maximum theoretical pathway yield.  相似文献   

6.
Crude glycerol from the biodiesel industry was used as carbon source for high cell density fed-batch cultivation of Pichia pastoris aiming at producing a chitin–glucan complex (CGC). More than 100 g L?1 biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g g?1 during the batch phase and 0.63 g g?1 during the fed-batch phase. The chitin–glucan complex was recovered from the yeast cell wall by hot alkaline extraction. CGC content in the cell wall was found to be relatively constant throughout the cultivation (18–26%) with a volumetric productivity of 1.28 g L?1 h?1 at the end of the fed-batch phase. The molar ratio of chitin:β-glucan in the extracted biopolymer was 16:84, close to other CGC extracted from Aspergillus biomass. The extracted polymer was characterized by Differential Scanning Calorimetry (DCS) and solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and compared with commercial biopolymers, namely, crab shell chitin and/or chitosan, algal β-glucan (laminarin) and fungal chitin–glucan complex (kiOsmetine).  相似文献   

7.
We examined the influence of cadence in cycling technique by quantifying phase relationships for a number of important variables at the crank and lower extremity joints. Any difference in the effect of cadence on force, effectiveness, and power phases would indicate an essential change in coordination pattern. Cycle kinetics was recorded for 10 male competitive cyclists at five cadences (60–100 rpm) at submaximal load (260 W). Joint powers were calculated using inverse dynamics methods. All data were expressed as a function of crank position. The phase of the crank mechanical profiles (total force, crank and joint power, and effectiveness) was calculated using four methods: crank angle of maximum (MA) and minimum (MI), fitting a sine wave (SI) and by cross-correlation (XC). These methods, apart from the MA method, showed the same relative phase. The variables, however, showed different phases being expressed as time lag: force effectiveness: 0.131 (±0.034) s; total force: 0.149 (±0.021) s; power: 0.098 (±0.027) s. The phases in joint powers hip 0.071 (±0.008), knee 0.082 (±0.009), and hip 0.077 (±0.012) were only well described by XC, and were somewhat lower than the crank power phase. These differences indicate the potential effect of inertia of the lower limb in phase shifts from joints to crank. Furthermore, the differences between the various crank variables indicate a change of technique with cadence.  相似文献   

8.
The bioremediation of the nematicide oxamyl, applied at the recommended rate of 6 l ha?1 in sandy soil cultivated with tomato and amended with different animal manures at the recommended dose of 2.5 tons ha?1, was investigated. The experiment was conducted in a controlled environmental chamber under a 16-h photoperiod, with a light intensity of 300 μ Em?2 s?1 at 25 °C and relative humidity of 70 ± 5%. The remaining amount of oxamyl in soil was extracted after different time intervals based on the solid phase extraction (SPE) with methanol and then analyzed by HPLC. Only the peak corresponding to oxamyl was observed in the chromatogram and no intermediate could be detected. By the end of the experiment (28 days), the dissipation percentage of oxamyl reached about 99% in the case of bovine manure-amended soil. This rate of disappearance was 1.76 times higher than in unamended-soil, while poultry and sheep manures enhanced the dissipation rate by 1.52 and 1.44 times, respectively. The disappearance rate constants and half-life values of the compound were obtained from the exponential decay equations. The decomposition of oxamyl in the control followed the first order kinetics with t1/2 of about 26 days. On the other hand, a biphasic model was assumed to explore the disappearance of oxamyl in soil amended with different animal manures where the rate of disappearance in the first phase was faster than the second phase. This is clearly reflected in the half-life (t1/2) values for the first and second phases, where the t1/2 values of oxamyl ranged from 3.19 to 5.41 and 9.76 to 43.31 days, respectively. The results demonstrated that animal manures may offer an efficient, cheap, safe, and friendly bioremediator for pesticide-polluted soil.  相似文献   

9.
Peat molecular chemistry reflects a combination of plant input and decomposition. Both vegetation community and the degree of decomposition of plant remains are highly dependent on depth and fluctuation of the water table and thus peat organic matter (OM) chemistry reflects past hydrological conditions. Changes in hydrology according to the OM composition (by pyrolysis-gas chromatography/mass spectrometry, pyrolysis-GC/MS) in a high-resolution sampled monolith of an 8000 years old peat deposit are presented. Analysis of 18 modern vegetation species resulted in molecular markers for Erica spp., Deschampsia flexuosa, Juncus bulbosus and Carex binervis, in addition to more general markers which enabled differentiation between woody, grass and moss vegetation. Factor analysis of 106 pyrolysis products quantified for all peat samples enabled identification of mineral (Factor 1) and hydrological (Factor 2) conditions of the bog. Depth profiles of vegetation markers showed good agreement with those of the scores of both factors and enabled the identification of 14 relatively wet periods, dating to 1430–1865 AD, 930–1045 AD, 640 AD, 270–385 AD, 190–215 AD, 135 AD, 45 BC–15 AD, 260–140 BC, 640–440 BC, 1055–960 BC, 1505–1260 BC, 2300 BC, 4190–2945 BC and 5700–5205 BC, which show excellent agreement with other palaeoclimatic studies in Europe. The results emphasize the importance of high-resolution sampling, in combination with the use of multiple vegetation markers and other peat OM characteristics for a proper interpretation of a peat record.  相似文献   

10.
A commercial macroporous resin (D3520) was screened for lipase recovery by adsorption from the aqueous phase of biodiesel production. The influences of several factors on the adsorption kinetics were investigated. It was found that the kinetic behavior of lipase adsorption by macroporous resin could be well described by pseudo-first-order model. Temperature had no significant effects on lipase adsorption, while resin-to-protein ratio (R) significantly affected both rate constant (k1) and equilibrium adsorption capacity (Qe). No lipase was adsorbed when mixing (shaking) was not performed; however, protein recovery reached 98% after the adsorption was conducted at 200 rpm for 5 h in a shaker. The presence of methanol and glycerol showed significant negative influence on lipase adsorption kinetics. Particularly, increasing glycerol concentration could dramatically decrease k1 but not impact Qe. Biodiesel was found to dramatically decrease Qe even present at a concentration as low as 0.02%, while k1 was found to increase with biodiesel concentration. The adsorbed lipase showed a relatively stable catalytic activity in tert-butanol system, but poor stability in solvent-free system when used for biodiesel preparation. Oil and biodiesel were also found to adsorb onto resin during transesterification in solvent-free system. Therefore, the resin had to be washed by anhydrous methanol before re-used for lipase recovery.  相似文献   

11.
We have designed a kinetic model of biodiesel production using Novozym 435 (Nz435) with immobilized Candida antarctica lipase B (CALB) as a catalyst. The scheme assumed reversibility of all reaction steps and imitated phase effects by introducing various molecular species of water and methanol. The global model was assembled from separate reaction blocks analyzed independently. Computer simulations helped to explore behavior of the reaction system under different conditions. It was found that methanolysis of refined oil by CALB is slow, because triglycerides (T) are the least reactive substrates. Conversion to 95% requires 1.5–6 days of incubation depending on the temperature, enzyme concentration, glycerol inhibition, etc. Other substrates, free fatty acids (F), diglycerides (D) and monoglycerides (M), are utilized much faster (1–2 h). This means that waste oil is a better feedstock for CALB. Residual enzymatic activity in biodiesel of standard quality causes increase of D above its specification level because of the reaction 2M  D + G. Filtration or alkaline treatment of the product prior to storage resolves this problem. The optimal field of Nz435 application appears to be decrease of F, M, D in waste oil before the conventional alkaline conversion. Up to 30-fold reduction of F-content can be achieved in 1–2 h, and the residual enzyme (if any) does not survive the following alkaline treatment.  相似文献   

12.
The paper deals with the synthesis of organic–inorganic hybrid membranes, Hy, obtained by simultaneous grafting and crosslinking of chitosan with epoxy-terminated polydimethylsiloxane and γ-glycidoxypropyltrimethoxysilane. Porous membranes, HyP, were also obtained by acid decomposition, at different temperatures (25 and 50 °C), of calcium carbonate porogenic agent trapped inside the material. As proved by electron and atomic force microscopy, the non-porous membrane is a phase segregated material with spherical domains (10–40 μm) of silica core covered by hydrophobic siloxane in a hydrophilic chitosan matrix. The porous membranes showed different morphologies with irregular circular pores of 10–30 μm diameters for the membranes obtained at lower temperature, while the membranes prepared at 50 °C tend to adopt a plan-parallel porosity. The water contact angles of hybrid membranes (78°) and pure chitosan membranes (72°) indicated a lower hydrophilic character of modified chitosan. As a result of the crosslinking and of increased hydrophobicity, the hybrid membranes were characterized by a smaller water swelling degree (about 30%) as compared to pure chitosan membrane (700%). However, the presence of the pores in HyP membranes determined an increase of the water adsorption (maximum swelling degree, about 100%). The hybrid membranes possess a slightly higher thermal stability as compared to chitosan (first initial decomposition temperature, 147 and 175 °C for chitosan and hybrid membranes, respectively), but a lower one as compared to pure polydimethylsiloxane. The high storage modulus of chitosan (about 5.1 × 109 Pa at 20 °C) is decreased by about one order of magnitude by the introduction of the highly flexible polysiloxane and the hybrid membranes are more flexible.  相似文献   

13.
Galinsoga ciliata Raf. Blake like Galinsoga parviflora Cav., comes from the Andes region. The chemical composition, activity and use are similar for both species. Galinsoga species are used in folk medicine as anti-inflammatory agents and accelerators for wound healing. Extracts are applied topically onto the skin to treat dermatological diseases, eczemas, lichens and hard-healing-wounds, and also to treat snakebites. Orally they used to cure flu and colds.In the studies using HPTLC method, different stationary phases, including unmodified silica gel, silica gels modified with CN, NH2, DIOL and RP18 groups were tried. The best separation of the tested compounds was achieved on silica gel plates, when as mobile phases mixtures – ethyl acetate–acetic acid–formic acid–water (100:11:11:26, v/v/v/v), ethyl acetate–methanol–formic acid–water (50:3:4:6, v/v/v/v) and ethyl acetate–methyl ethyl ketone–formic acid–water (30:9:3:3, v/v/v/v) – were used. Using reference substances, in the examined extracts the presence of flavonoids: patulitrin, quercimeritrin, quercitagetrin, and phenolic acids – caffeic and chlorogenic acids was found.HPLC analyses of extracts were carried out on a reversed-phase Zorbax SB column (150 mm × 2.1 mm, 1.9 μm). The mobile phase (A) was water/acetonitrile/formic acid (95:5:0.1, v/v/v) and the mobile phase (B) was acetonitrile/formic acid (100:0.1, v/v). A linear gradient system was used: 0–30 min, 1–30% B. Application of HPLC-DAD-MS method confirmed the results obtained by HPTLC method. Moreover, in the tested extracts the presence of caffeoylglucaric acids as dominating compounds was detected.  相似文献   

14.
Centrifugal partition chromatography in the pH-zone-refining mode was successfully applied to the separation of alkaloids, directly from a crude extract of Ipomoea muricata. The experiment was performed with a two-phase solvent system composed of methyl tert-butyl ether (MtBE)–acetonitrile–water (4:1:5, v/v) where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and trifluoroacetic acid (10 mM) to the aqueous mobile phase as an eluter. From 4 g of crude extract, 210 mg lysergol and 182 mg chanoclavine were obtained in 97% and 79.6% purities. Total yield recovery was >95%. Isolated alkaloids were characterized on the basis of their 1H, 13C NMR and ESI-MS data.  相似文献   

15.
《Process Biochemistry》2010,45(3):297-305
Pure glycerol and glycerol-rich product (GRP) obtained from the biodiesel industries were used as carbon source for the production of a new extracellular polysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682. The influence of temperature (20–40 °C) and pH (6.0–8.0) was studied. A temperature of 30 °C and pH control at 6.8 gave the maximum cell growth and EPS production. The culture attained a maximum cell dry weight (CDW) of 9.55 g l−1 and an EPS concentration of 11.82 g l−1 when cultivated with pure glycerol. GRP was a suitable carbon source, as shown by the slightly higher EPS concentration (12.18 g l−1). The EPS productivity obtained with GRP (3.85 g l−1 d−1) was almost twice that obtained with pure glycerol (2.00 g l−1 d−1). Also, the yield on glycerol was higher for the cultivation with GRP (0.36 g g−1) than for pure glycerol (0.28 g g−1). The EPS was a high molecular weight heteropolysaccharide, composed by neutral sugars (37–80 wt% galactose, 2–30 wt% glucose, 0.5–25 wt% mannose and 0.5–20 wt% rhamnose) and containing acyl group substituents (pyruvil, acetyl and succinyl were identified). The EPS forms highly viscous aqueous dispersions with many potential commercial applications.  相似文献   

16.
Urea-induced protein denaturation can be effectively inhibited by trehalose, but the thermodynamic and kinetic behaviors are still unclear. Herein, the counteraction of trehalose on urea-induced unfolding of ferricytochrome c was studied. Thermodynamic parameters for the counteraction of trehalose were derived based on fluorescence spectroscopic data. Then the kinetics was emphatically investigated by stopped-flow fluorescence spectroscopy. Urea-induced unfolding of ferricytochrome c in 8.00 mol/L urea solution reveals two observable phases, including fast and slow phases following a burst phase. Trehalose has little influence on the burst phase amplitude. Nevertheless, the observable unfolding pathway is significantly affected by trehalose. At lower trehalose concentrations (<0.20 mol/L) in 8.00 mol/L urea, the unfolding pathways still keep to show two phases. However, the rate constant and amplitude for the fast phase diminish with increasing trehalose concentration. In contrast, the rate constant for the slow phase shows only a slight change with a significant increase of the amplitude. At higher trehalose concentrations (>0.30 mol/L), the unfolding pathway is transformed into a single slow phase. The rate constant and amplitude for the single phase also decrease with increasing trehalose concentration. The studies are expected to help our understanding of trehalose effects on protein stability.  相似文献   

17.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

18.
A recombinant Rhizopus oryzae lipase producing Muts Pichia pastoris strain was used as a model organism to study the effect of mixed substrates (glycerol and methanol) on the specific product productivity. Different fed-batch cultivations were performed under three constant specific growth rates (0.02, 0.05 and 0.1 h−1), maintaining a constant methanol concentration of 2 g l−1.At the lowest μ tested (0.02 h−1), the specific productivity was 1.23 and 1.61 fold higher and the specific methanol consumption rate (qsMeOH) was 3 and 3.5 fold higher than values obtained when μ was 0.05 and 0.1 h−1, respectively. This implies a relation between the qsMeOH and the specific productivity, yielding higher specific productivities whenever the consumption of methanol is higher. Although glycerol was maintained under limiting conditions in all μ tested, when the relation between the μGly and μMeOH was larger than 4, an important decrease on the maximal activity value was observed.Finally, a comparison under the same conditions using glycerol or sorbitol as co-substrates was also performed, obtaining better specific productivity when sorbitol was used. In addition, protease activity was detected when glycerol was used as co-substrate.  相似文献   

19.
Direct utilization of crude glycerol, a major byproduct in biodiesel industry, becomes imperative, because its production has outpaced the demand recently. We demonstrated that the oleaginous yeast Rhodosporidium toruloides Y4 had a great capacity to convert glycerol into lipids with high yield using the two-stage production process. Significantly higher cell mass and lipid yield were observed when the media were made with synthetic crude glycerol than pure glycerol. The process achieved a lipid yield of 0.22 g g−1 glycerol, which was comparable with the lipid yield using glucose as the substrate. Lipid samples showed similar fatty acid compositional profiles to those of vegetable oils, suggesting that such microbial lipids were potential feedstock for biodiesel production. Our data provided an attractive route to integrate biodiesel production with microbial lipid technology for better resource efficiency and economical viability.  相似文献   

20.
《Process Biochemistry》2010,45(2):147-152
A highly active recombinant whole-cell biocatalyst, Escherichia coli pETAB2/pG-KJE1, was developed for the efficient production of (S)-styrene oxide from styrene. The recombinant E. coli overexpressed styAB the genes of styrene monooxygenase of Pseudomonas putida SN1 and coexpressed the genes encoding chaperones (i.e., GroEL–GroES and DnaK–DnaJ–GrpE). The styrene monooxygenases were produced to ca. 40% of the total soluble proteins, enabling the whole-cell activity of the recombinant of 180 U/g CDW. The high StyAB activity in turn appeared to direct cofactors and molecular oxygen to styrene epoxidation. The product yield on energy source (i.e., glucose) reached ca. 40%. In addition, biotransformation in an organic/aqueous two-liquid phase system allowed the product to accumulate to 400 mM in the organic phase within 6 h, resulting in an average specific and volumetric productivity of 6.4 mmol/g dry cells/h (106 U/g dry cells) and 67 mM/h (1110 U/Laq), respectively, under mild reaction conditions. These results indicated that the high productivity and the high product yield on energy source were driven by the high enzyme activity. Therefore, it was concluded that oxygenase activity of whole-cell biocatalysts is one of the critical factors to determine their catalytic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号