首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida KT2442 commonly produces medium-chain-length polyhydroxyalkanoates (PHA) consisting of 3-hydroxyhexanoate (C6) to 3-hydroxydodecanoate (C12) when grown in glucose or even number fatty acid. When two of the beta-oxidation genes fadBA were deleted, the P. pudida KT2442 mutant named KTOY06 accumulated a homopolymer of poly-3-hydroxyheptanoate (P3HHp) up to 71 wt% of its cell dry weight in the presence of heptanoate as a single carbon source. P3HHp contents in the cell dry weight were in direct proportional to Na-heptanoate concentration up to 10 g/L. In contrast, under the same cultivation conditions, the wild type P. putida KT2442 produced a copolymer consisting of 3-hydroxyheptanoate (3HHp) and 5.3–8.4 mol% 3-hydroxynonanoate (3HN). Gas chromatography (GC), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC) were used to characterize the homopolymer P3HHp, respectively. It was found that the P3HHp with an average molecular weight of 455 kDa was a completely amorphous homopolymer without crystallinity. P3HHp is thermo-degradable at around 250 °C.  相似文献   

2.
Pseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acids. When gene encoding 3-hydroxyacyl-CoA dehydrogenase which catalyzes long-chain-3-hydroxyacyl-CoA to 3-ketoacyl-CoA, was partially or completely deleted in P. putida KTOY08, the PHA accumulated was shown to contain only two different monomer structures dominated by a monomer of the same chain length as that of the fatty acids fed and another monomer two carbon atoms shorter. Among the PHA copolymers, P(44% 3HD-co-3HDD) containing 44% 3HD and 56% 3HDD was demonstrated to have a melting temperature Tm, an apparent heat of fusion △Hm and a Young’s modulus E of 75 °C, 51 J g?1 and 2.0 MPa, respectively, the highest among all the MCL PHA studied.  相似文献   

3.
Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida   总被引:1,自引:0,他引:1  
Pseudomonas putida KT2442 has been a well-studied producer of medium-chain-length (mcl) polyhydroxyalkanoate (PHA) copolymers containing C6 ~ C14 monomer units. A mutant was constructed from P. putida KT2442 by deleting its phaG gene encoding R-3-hydroxyacyl-ACP-CoA transacylase and several other β-oxidation related genes including fadB, fadA, fadB2x, and fadAx. This mutant termed P. putida KTHH03 synthesized mcl homopolymers including poly(3-hydroxyhexanoate) (PHHx) and poly(3-hydroxyheptanoate) (PHHp), together with a near homopolymer poly(3-hydroxyoctanoate-co-2 mol% 3-hydroxyhexanoate) (PHO*) in presence of hexanoate, heptanoate, and octanoate, respectively. When deleted with its mcl PHA synthase genes phaC1 and phaC2, the recombinant mutant termed P. putida KTHH08 harboring pZWJ4-31 containing PHA synthesis operon phaPCJ from Aeromonas hydrophila 4AK4 accumulated homopolymer poly(3-hydroxyvalerate) (PHV) when valerate was used as carbon source. The phaC deleted recombinant mutant termed P. putida KTHH06 harboring pBHH01 holding PHA synthase PhbC from Ralstonia eutropha produced homopolymers poly(3-hydroxybutyrate) (PHB) and poly(4-hydroxybutyrate) using γ-butyrolactone was added as precursor. All the homopolymers were physically characterized. Their weight average molecular weights ranged from 1.8 × 105 to 1.6 × 106, their thermal stability changed with side chain lengths. The derivatives of P. putida KT2442 have been developed into a platform for production of various PHA homopolymers.  相似文献   

4.
Genetic engineering of Halomonas spp. was seldom reported due to the difficulty of genetic manipulation and lack of molecular biology tools. Halomonas TD01 can grow in a continuous and unsterile process without other microbial contaminations. It can be therefore exploited for economic production of chemicals. Here, Halomonas TD01 was metabolically engineered using the gene knockout procedure based on markerless gene replacement stimulated by double-strand breaks in the chromosome. When gene encoding 2-methylcitrate synthase in Halomonas TD01 was deleted, the conversion efficiency of propionic acid to 3-hydroxyvalerate (3HV) monomer fraction in random PHBV copolymers of 3-hydroxybutyrate (3HB) and 3HV was increased from around 10% to almost 100%, as a result, cells were grown to accumulate 70% PHBV in dry weight (CDW) consisting of 12 mol% 3HV from 0.5 g/L propionic acid in glucose mineral medium. Furthermore, successful deletions on three PHA depolymerases eliminate the possible influence of PHA depolymerases on PHA degradation in the complicated industrial fermentation process even though significant enhanced PHA content was not observed. In two 500 L pilot-scale fermentor studies lasting 70 h, the above engineered Halomonas TD01 grew to 112 g/L CDW containing 70 wt% P3HB, and to 80 g/L CDW with 70 wt% P(3HB-co-8 mol% 3HV) in the presence of propionic acid. The cells grown in shake flasks even accumulated close to 92% PHB in CDW with a significant increase of glucose to PHB conversion efficiency from around 30% to 42% after 48 h cultivation when pyridine nucleotide transhydrogenase was overexpressed. Halomonas TD01 was also engineered for producing a PHA regulatory protein PhaR which is a robust biosurfactant.  相似文献   

5.
Pseudomonas aureofaciens grown on octanoate or gluconate synthesized medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To clone the PHA synthase gene(s) (phaC), the genomic library of P. aureofaciens was constructed using a cosmid vector. The recombinant cosmids that clone phaC were detected by the complementation with a PHA-negative mutant, P. putida GPp104. The resulting recombinant cosmid, named pVK6, contained a 13-kbp DNA insert. Genetic analysis of the pha locus in pVK6 revealed the presence of six ORFs, genes encoding two PHA synthases, 1 and 2 (phaC1 and phaC2), PHA depolymerase (phaZ), two PHA granule-associated proteins (phaF and phaI), and an unknown protein (phaD). The heterologous expression of pha genes from P. aureofaciens was confirmed. P. putida GPp104 regained the ability to accumulate PHA on introduction of pVK6. Wild-type strains P. oleovorans and P. fluorescens, which were unable to accumulate PHA when grown on gluconate, acquired the ability to accumulate PHA from gluconate when they possessed pVK6. Received: 10 January 2001 / Accepted: 7 June 2001  相似文献   

6.
Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62 wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10 wt% of cell dry weight scl–mcl PHA copolymers, of which 21.18 mol% was 3-hydroxybutyrate and 78.82 mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.  相似文献   

7.
The site-specific mutagenesis for PHA synthase PhaC2Ps1317 from Pseudomonas stutzeri 1317 was conducted for optimizing production of short-chain-length and medium-chain-length polyhydroxyalkanoates (scl-mcl PHA). Recombinant Ralstonia eutropha PHB-4 harboring double mutated phaC2 Ps1317 gene (phaC2 Ps QKST) produced 42 wt.% PHA content in the cell dry weight (CDW) with 93 mol% 3-hydroxybutyrate (HB) as monomer in the PHA copolymer. Compared to that of wild-type phaC2 Ps1317 , the higher PHA content indicated the effectiveness of the specific point mutations for improvement on PhaC2Ps1317 activity and PHA production. The physical characterization revealed that the PHA produced by the recombinant strain was scl-mcl PHA copolymers with molecular weights and polydispersity reasonable for practical applications. Recombinant R. eutropha PHB-4 containing mutated phaC2 Ps1317 termed phaC2 Ps QKST was demonstrated to be able to produce scl-mcl PHA copolymers consisting of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers covering the carbon chain lengths from C4 to C12 when related substrates were provided. Recombinant R. eutropha PHB-4 containing phaC2PsQKST could be used as a strain for production of copolymers consisting of dominated HB and medium-chain-length 3-hydroxyalkanoates (HA) with better application properties.  相似文献   

8.
Twenty-five aerobic phenol-degrading bacteria, isolated from different environmental samples on phenol agar after several subcultures in phenol broth, utilized phenol (0.2 g l−1) within 24 h, but removal of phenol was more rapid when other carbon sources were also present. A microtitre plate method was developed to determine growth rate, biofilm formation and respiratory activity of the strains isolated. Pseudomonas putida strains C5 and D6 showed maximum growth (as O.D. at 600 nm), P. putida D6 and unidentified bacterial strain M1 were more stable at high concentrations of phenol (0.8 g l−1), and P. putida C5 formed the greatest amount of biofilm in 0.5 g phenol l−1 medium. Measurement of dehydrogenase activity as reduction of triphenyl tetrazolium chloride supported data on growth rate and biofilm formation. The microtitre plate method provided a selective method for detection of the best phenol degrading and biofilm-forming microorganisms, and was also a rapid, convenient means of studying the effect of phenol concentration on growth rate and biofilm formation.  相似文献   

9.
Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram‐negative bacteria, including mcl‐polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the viable prey cell number or PHA content. The presence of mcl‐PHA hydrolysed products in the culture supernatant after predation on P. putida KT42Z, a PHA producing strain lacking PhaZ depolymerase, confirmed the ability of Bdellovibrio to degrade the prey's PHA. Predator motility was higher when growing on PHA accumulating prey. External addition of PHA polymer (latex suspension) to Bdellovibrio preying on the PHA minus mutant P. putida KT42C1 restored predator movement, suggesting that PHA is a key prey component to sustain predator swimming speed. High velocities observed in Bdellovibrio preying on the PHA producing strain were correlated to high intracellular ATP levels of the predator. These effects brought Bdellovibrio fitness benefits as predation on PHA producers was more efficient than predation on non‐producing bacteria.  相似文献   

10.
The rpoB gene encoding for β subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rifr) phenotype of bacteria. Here we have characterized rpoB/Rifr system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24 h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rifr clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rifr mutations characterized for P. aeruginosa grown at 37 °C and that characterized for P. putida grown at 30 °C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 °C. The strong Rifr phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 °C and expressed weak Rifr phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 °C and 37 °C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rifr mutants from selective plates are critical when the rpoB/Rifr test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.  相似文献   

11.
The halophile Halomonas TD01 and its derivatives have been successfully developed as a low-cost platform for the unsterile and continuous production of chemicals. Therefore, to increase the genetic engineering stability of this platform, the DNA restriction/methylation system of Halomonas TD01 was partially inhibited. In addition, a stable and conjugative plasmid pSEVA341 with a high-copy number was constructed to contain a LacIq-Ptrc system for the inducible expression of multiple pathway genes. The Halomonas TD01 platform, was further engineered with its 2-methylcitrate synthase and three PHA depolymerases deleted within the chromosome, resulting in the production of the Halomonas TD08 strain. The overexpression of the threonine synthesis pathway and threonine dehydrogenase made the recombinant Halomonas TD08 able to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV consisting of 4–6 mol% 3-hydroxyvalerate or 3HV, from various carbohydrates as the sole carbon source. The overexpression of the cell division inhibitor MinCD during the cell growth stationary phase in Halomonas TD08 elongated its shape to become at least 1.4-fold longer than its original size, resulting in enhanced PHB accumulation from 69 wt% to 82 wt% in the elongated cells, further promoting gravity-induced cell precipitations that simplify the downstream processing of the biomass. The resulted Halomonas strains contributed to further reducing the PHA production cost.  相似文献   

12.
《Process Biochemistry》2010,45(3):297-305
Pure glycerol and glycerol-rich product (GRP) obtained from the biodiesel industries were used as carbon source for the production of a new extracellular polysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682. The influence of temperature (20–40 °C) and pH (6.0–8.0) was studied. A temperature of 30 °C and pH control at 6.8 gave the maximum cell growth and EPS production. The culture attained a maximum cell dry weight (CDW) of 9.55 g l−1 and an EPS concentration of 11.82 g l−1 when cultivated with pure glycerol. GRP was a suitable carbon source, as shown by the slightly higher EPS concentration (12.18 g l−1). The EPS productivity obtained with GRP (3.85 g l−1 d−1) was almost twice that obtained with pure glycerol (2.00 g l−1 d−1). Also, the yield on glycerol was higher for the cultivation with GRP (0.36 g g−1) than for pure glycerol (0.28 g g−1). The EPS was a high molecular weight heteropolysaccharide, composed by neutral sugars (37–80 wt% galactose, 2–30 wt% glucose, 0.5–25 wt% mannose and 0.5–20 wt% rhamnose) and containing acyl group substituents (pyruvil, acetyl and succinyl were identified). The EPS forms highly viscous aqueous dispersions with many potential commercial applications.  相似文献   

13.
In this paper, the authors propose a model for DDT biodegradation by bacteria grown in microniches created in the porous structure of green bean coffee. Five bacteria isolated from coffee beans, identified as Pseudomonas aeruginosa, P. putida, Stenotrophomonas maltophilia, Flavimonas oryzihabitans, and Morganella morganii. P. aeruginosa and F. oryzihabitans, were selected for pesticide degradation. Bacteria were selected according to their ability to grow on mineral media amended with: (a) glucose (10 g l−1), (b) peptone (2 g l−1), and (c) ground coffee beans (2 g l−1). These three media were supplemented with 50 mg l−1 of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) and endosulfan. GC/MS analysis demonstrated that the greatest DDT removal was obtained in the medium supplemented with coffee beans, where 1,1-dichloro-2,2′-bis (4-chlorophenyl)ethylene (DDE), 1-chloro-2,2-bis (4-chlorophenyl) ethane (DDMU) and 2,2′-bis (p-chlorophenyl)ethanol (DDOH) were detected. DDMU is a product of the reductive dechlorination of DDE, which in this system could be carried out under the anaerobic conditions in microniches present in the porous structure of the coffee bean. This was supported by scanning electron microscopy. Green bean coffee could be used as a nutrient source and as a support for bacterial growth in pesticide degradation.  相似文献   

14.
《Process Biochemistry》2007,42(4):686-692
Pseudomonas putida 33 wild strain, subjected to gamma ray mutagenesis and designated as P. putida 300-B mutant was used as microbial rhamnolipid-producer by using distant carbon sources (viz. hydrocarbons, waste frying oils ‘WFOs’, vegetable oil refinery wastes and molasses) in the minimal media under shake flask conditions. The behavior of glucose as co-substrate and growth initiator was examined. The 300-B mutant strain showed its ability to grow on all the substrates tested and produced rhamnolipid surfactants to different extents however; soybean and corn WFOs were observed to be preferred carbon sources followed by kerosene and paraffin oils, respectively. The best cell biomass (3.5 g l−1) and rhamnolipids yield (4.1 g l−1) were obtained with soybean WFO as carbon source and glucose as growth initiator under fed-batch cultivation showing an optimum specific growth rate (μ) of 0.272 h−1, specific product yield (qp) of 0.318 g g−1 h and volumetric productivity (PV) of 0.024 g l−1 h. The critical micelle concentration of its culture supernatant was observed to be 91 mg rhamnolipids l−1 and surface tension as 31.2 mN m−1.  相似文献   

15.
Production of poly(3-hydroxyalkaonates) (PHA) by Pseudomonas aeruginosa 42A2 from agro-industrial oily wastes was studied. PHA accumulation, throughout the cell cycle, was observed as intracellular accumulation associated to polyphosphate granules. A 54.6% PHA accumulation was obtained when technical oleic acid (TOA) was used as carbon source. Molecular weight of the polymer was 54.7 Da. The polymer was amorphous, with glass transition at −47.5 °C and thermal degradation at 293 °C. PHA production and monomer composition were affected by KLa and temperature. The most relevant characteristic of the polymer produced at low aeration rates (KLa, 0.06 s−1) were the unusual C14:2 (13%) and the increase of C12:1 (42.2%). The highest amount of unsaturated monomers was found in the polymer produced at 18 °C (64.4%).PHA accumulation ranged between 66.1% when waste-free fatty acids from soybean oil (WFFA) were used as carbon substrate, 29.4% when waste frying oil (WFO) was used and 16.8% when glucose was used. Depending on the substrate supplied a wide range of components was observed. Major saturated or unsaturated components of the polymer found were C10:0, C12:0 and C8:0 or C12:1 and C14:1, respectively. When glucose was used as carbon substrate C9:0, C11:0 and C16:0 were found.  相似文献   

16.
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h−1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate−1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.  相似文献   

17.
The aim of this study was to investigate the effectiveness of bioaugmentation and transfer of plasmid pWWO (TOL plasmid) to mixed microbial populations in pilot and laboratory scale sequencing batch biofilm reactors (SBBRs) treating synthetic wastewater containing benzyl alcohol (BA) as a model xenobiotic. The plasmid donor was a Pseudomonas putida strain chromosomally tagged with the gene for the red fluorescent protein carrying a green fluorescent protein labeled TOL plasmid, which confers degradation capacity for several compounds including toluene and BA. In the pilot scale SBBR donor cells were disappeared 84 h after inoculation while transconjugants were not detected at all. In contrast, both donor and transconjugant cells were detected in the laboratory scale reactor where the ratio of transconjugants to donors fluctuated between 1.9 × 10?1 and 8.9 × 10?1 during an experimental period of 32 days. BA degradation rate was enhanced after donor inoculation from 0.98 mg BA/min prior to inoculation to 1.9 mg BA/min on the seventeenth day of operation. Survival of a bioaugmented strain, conjugative plasmid transfer and enhanced BA degradation was demonstrated in the laboratory scale SBBR but not in the pilot scale SBBR.  相似文献   

18.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by a wide range of bacteria, including Pseudomonads. These polymers are accumulated in the cytoplasm as carbon and energy storage materials when culture conditions are unbalanced and hence, they have been classically considered to act as sinks for carbon and reducing equivalents when nutrients are limited. Bacteria facing carbon excess and nutrient limitation store the extra carbon as PHAs through the PHA polymerase (PhaC). Thereafter, under starvation conditions, PHA depolymerase (PhaZ) degrades PHA and releases R -hydroxyalkanoic acids, which can be used as carbon and energy sources. To study the influence of a deficient PHA metabolism in the growth of Pseudomonas putida KT2442 we have constructed two mutant strains defective in PHA polymerase ( phaC1 )- and PHA depolymerase ( phaZ )-coding genes respectively. By using these mutants we have demonstrated that PHAs play a fundamental role in balancing the stored carbon/biomass/number of cells as function of carbon availability, suggesting that PHA metabolism allows P. putida to adapt the carbon flux of hydroxyacyl-CoAs to cellular demand. Furthermore, we have established that the coordination of PHA synthesis and mobilization pathways configures a functional PHA turnover cycle in P. putida KT2442. Finally, a new strain able to secrete enantiomerically pure R -hydroxyalkanoic acids to the culture medium during cell growth has been engineering by redirecting the PHA cycle to biopolymer hydrolysis.  相似文献   

19.
Microbial conversion offers a promising strategy for overcoming the intrinsic heterogeneity of the plant biopolymer, lignin. Soil microbes that natively harbour aromatic-catabolic pathways are natural choices for chassis strains, and Pseudomonas putida KT2440 has emerged as a viable whole-cell biocatalyst for funnelling lignin-derived compounds to value-added products, including its native carbon storage product, medium-chain-length polyhydroxyalkanoates (mcl-PHA). In this work, a series of metabolic engineering targets to improve mcl-PHA production are combined in the P. putida chromosome and evaluated in strains growing in a model aromatic compound, p-coumaric acid, and in lignin streams. Specifically, the PHA depolymerase gene phaZ was knocked out, and the genes involved in β-oxidation (fadBA1 and fadBA2) were deleted. Additionally, to increase carbon flux into mcl-PHA biosynthesis, phaG, alkK, phaC1 and phaC2 were overexpressed. The best performing strain – which contains all the genetic modifications detailed above – demonstrated a 53% and 200% increase in mcl-PHA titre (g l−1) and a 20% and 100% increase in yield (g mcl-PHA per g cell dry weight) from p-coumaric acid and lignin, respectively, compared with the wild type strain. Overall, these results present a promising strain to be employed in further process development for enhancing mcl-PHA production from aromatic compounds and lignin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号