首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kappa (κ) opioid receptor selective antagonists are useful pharmacological tools in studying κ opioid receptors and have potential to be used as therapeutic agents for the treatment of a variety of diseases including mood disorders and drug addiction. Arodyn (Ac[Phe1–3,Arg4,d-Ala8]Dyn A-(1–11)NH2) is a linear acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al. J Med Chem 2002;45:5617–5619) and prevents stress-induced reinstatement of cocaine-seeking behavior following central administration (Carey et al. Eur J Pharmacol 2007;569:84–89). To restrict its conformational mobility, explore possible bioactive conformations and potentially increase its metabolic stability we synthesized cyclic arodyn analogs on solid phase utilizing a novel ring-closing metathesis (RCM) reaction involving allyl-protected Tyr (Tyr(All)) residues. This approach preserves the aromatic functionality and directly constrains the side chains of one or more of the Phe residues. The novel cyclic arodyn analog 4 cyclized between Tyr(All) residues incorporated in positions 2 and 3 exhibited potent κ opioid receptor antagonism in the [35S]GTPγS assay (KB?=?3.2?nM) similar to arodyn. Analog 3 cyclized between Tyr(All) residues in positions 1 and 2 also exhibited nanomolar κ opioid receptor antagonist potency (KB?=?27.5?nM) in this assay. These are the first opioid peptides cyclized via RCM involving aromatic residues, and given their promising pharmacological activity represent novel lead peptides for further exploration.  相似文献   

2.
《Life sciences》1995,57(20):PL315-PL320
The naturally occurring indole alkaloid ibogaine is of interest because of its reported ability to block drug seeking behavior for extended periods. The compound also potentiates morphine-induced analgesia in mice and reduces certain naltrexone-precipitated withdrawal signs in morphine-dependent rats. Although these results might suggest ibogaine interaction with opioid receptors, previous receptor binding studies (Brain Res. 571:242–247, 1980) found that ibogaine had a Ki value of only 2 μM for the kappa opioid receptor and was virtually inactive in blocking mu and delta receptor binding (Ki >100 μM). The present investigation of ibogaine interaction with the mu opioid receptor from mouse forebrain labeled with [3H]-naloxone, however, yielded significantly more potent mu opioid Ki values. LIGAND analysis indicated that the data were best fit by a two site binding model, with Ki values of about 130 nM and 4 μM, reflecting ibogaine recognition of different agonist affinity states of the receptor. Inclusion of 100 mM NaCl in the assay to induce the agonist low affinity state of the receptor, reduced ibogaine's inhibition of [3H]-naloxone binding. These results suggest that ibogaine is an agonist at the mu opioid receptor with a Ki value of about 130 nM, potentially explaining ibogaine's antinociceptive effects as well as its reported reduction of opioid withdrawal symptoms and attenuation of drug seeking behavior.  相似文献   

3.
We report the design and the parallel solid phase synthesis of linear and oligoheterocyclic peptidomimetic analogs of Leu-enkephalin. The described peptidomimetics represent different unique scaffolds that distribute in the space the peptidyl side chains of amino acids essential for biological activity and mimic the bioactive conformation of the Leu-enkephalin peptide. All the compounds were screened in competitive radioligand binding assays to determine their affinities for μ-(MOR), and κ-(KOR) opioid receptors. A reduced analog of Leu-enkephalin TPI1879-26 with activity Ki = 60 nM for the mu receptor was identified.  相似文献   

4.
Aminobenzyloxyarylamide derivatives 1a-i and 2a-t were designed and synthesized as novel selective κ opioid receptor (KOR) antagonists. The benzoyl amide moiety of LY2456302 was changed into N-hydroxybenzamide and benzisoxazole-3(2H)-one to investigate whether it could increase the binding affinity or selectivity for KOR. All target compounds were evaluated in radioligand binding assays for opioid receptor binding affinity. These efforts led to the identification of compound 1c (κ Ki = 179.9 nM), which exhibited high affinity for KOR. Moreover, the selectivity of KOR over MOR and DOR increased nearly 2-fold and 7-fold, respectively, compared with (±)LY2456302.  相似文献   

5.
As the reports about C-homomorphinans with the seven-membered C-ring are much fewer than those of morphinan derivatives with a six-membered C-ring, we attempted to synthesize C-homomorphinan derivatives and to evaluate their opioid activities. C-Homomorphinan 5 showed sufficient binding affinities to the opioid receptors. C-Homomorphinan derivatives possessing the δ address moiety such as indole (NTI-type), quinoline, or benzylidene (BNTX-type) functionalities showed the strongest binding affinities for the δ receptor among the three types of opioid receptors, which indicated that the C-homomorphinan skeleton sufficiently functions as a message-part in the ligand. Although NTI-type compound 8 and quinoline compound 9 with C-homomorphinan scaffold exhibited lower affinities and selectivities for the δ receptor than the corresponding morphinan derivatives did, both the binding affinity and selectivity for the δ receptor of BNTX-type compound 12 with a seven-membered C-ring were improved compared with the corresponding compounds with a six-membered C-ring including BNTX itself. BNTX-Type compound 12 was the most selective δ receptor antagonist among the tested compounds.  相似文献   

6.
Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands.  相似文献   

7.
In an effort to improve biphalin’s potency and efficacy at the µ-(MOR) and δ-opioid receptors (DOR), a series of cyclic biphalin analogues 15 with a cystamine or piperazine linker at the C-terminus were designed and synthesized by solution phase synthesis using Boc-chemistry. Interestingly, all of the analogues showed balanced opioid agonist activities at all opioid receptor subtypes due to enhanced κ-opioid receptor (KOR) activity. Our results indicate that C-terminal flexible linkers play an important role in KOR activity compared to that of the other cyclic biphalin analogues with a hydrazine linker. Among them, analogue 5 is a potent (Ki?=?0.27, 0.46, and 0.87?nM; EC50?=?3.47, 1.45, and 13.5?nM at MOR, DOR, and KOR, respectively) opioid agonist with high efficacy. Based on the high potency and efficacy at the three opioid receptor subtypes, the ligand is expected to have a potential synergistic effect on relieving pain and further studies including in vivo tests are worthwhile.  相似文献   

8.
Novel double-capped triplet drugs, which have one pharmacophore unit and two epoxymethano or dimethylepoxymethano structures (termed cap or diMe-cap structures, respectively) were synthesized. Key intermediate oxazoline 16 derived from acetone enabled the effective synthesis of double-capped triplets. SYK-134 (7a) and SYK-135 (8a) with N-cyclopropylmethyl substituent and cap structures showed selectivities for the κ opioid receptor. On the other hand, the N-Me series exhibited selectivities for the μ opioid receptor. The double-capped triplet drugs with diMe-cap structures preferred the μ receptor independently of their N-substituents. SYK-385 (19b), one of the μ-selective double-capped triplet drugs, showed the highest selectivity for the μ receptor among the reported μ-selective nonpeptide ligands.  相似文献   

9.
Derivatives of the lead compound N-BPE-8-CAC (1) where each CH of the biphenyl group was individually replaced by N were prepared in hopes of identifying high affinity ligands with improved aqueous solubility. Compared to 1, binding affinities of the five possible pyridinyl derivatives for the μ opioid receptor were between threefold lower to fivefold higher with the Ki of the most potent compound being 0.064 nM. Docking of 8-CAC (2) into the unliganded binding site of the mouse μ opioid receptor (pdb: 4DKL) revealed that 8-CAC and β-FNA (from 4DKL) make nearly identical interactions with the receptor. However, for 1 and the new pyridinyl derivatives 48, binding is not tolerated in the 8-CAC binding mode due to the steric constraints of the large N-substituents. Either an alternative binding mode or rearrangement of the protein to accommodate these modifications may account for their high binding affinity.  相似文献   

10.
Aerobic oxidation of indolomorphinan 1 without a 4,5-epoxy bridge proceeded in the presence of platinum catalyst to give indoleninomorphinan 2 or quinolono-C-normorphinan 5. The 4-hydroxy group would play an important role in deciding the course of the reaction. Treatment of 2a with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) gave spiroindolinonyl-C-normorphinan 3a whose structure resembles that of δ opioid receptor agonist spiroindanyloxymorphone (SIOM). Boron trichloride was effective for the reverse reaction from 3a to 2a without side reaction. This practical interconversion method between hydroxyindolenine and spiroindolinone would be useful for the design and construction of drug-like compound libraries. Although the compound 3b was expected to show the selectivity for δ opioid receptor because of the structural resemblance to SIOM, it was rather selective for μ opioid receptor (μ: Ki = 0.75 nM; δ: Ki = 2.90 nM; κ: Ki = 13.4 nM). The result suggests that the slight difference of the spatial location of the benzene rings in these compounds may definitively affect the binding affinity for δ opioid receptor.  相似文献   

11.
Gastrointestinal dysfunction as a consequence of the use of opioid analgesics is of significant clinical concern. First generation drugs to treat these opioid-induced side-effects were limited by their negative impact on opioid receptor agonist-induced analgesia. Second generation therapies target a localized, peripherally-restricted, non-CNS penetrant drug distribution of opioid receptor antagonists. Herein we describe the discovery of the N-substituted-endo-3-(8-aza-bicyclo[3.2.1]oct-3-yl)-phenol and -phenyl carboxamide series of μ-opioid receptor antagonists. This report highlights the discovery of the key μ-opioid receptor antagonist pharmacophore and the optimization of in vitro metabolic stability through the application of a phenol bioisostere. The compounds 27a and 31a with the most attractive in vitro profile, formed the basis for the application of Theravance Biopharma’s multivalent approach to drug discovery to afford the clinical compound axelopran (TD-1211), targeted for the treatment of opioid-induced constipation.  相似文献   

12.
Since the mu opioid receptor (MOR) is known to be involved in the therapeutically relevant pathways leading to the manifestation of pain and addiction, we are currently studying the specific structural characteristics that promote antagonism at the MOR. The opiates 6β-naltrexol and 6β-naltrexamide function as neutral antagonists in in vitro and in vivo systems previously exposed to morphine, and are under investigation as improved treatments for narcotic dependence. In this research, we synthesized and characterized carbamate and sulfonate ester derivates of 6β-naltrexol that do not contain a protic group at C6, and evaluated these compounds for opioid receptor affinity. In vitro receptor subtype (μ, κ, and δ opioid receptors) binding data of the carbamate and sulfonate derivatives is reported. All four compounds synthesized exhibited affinity for the MOR better than the standard 6β-naltrexol HCl. Based on Ki data, the order of MOR affinity is as follows: 9 > 13 > 14 > 10 > 6β-naltrexol HCl. Carbamate 9 and tosylate 13 displayed subnanomolar affinity for the MOR, while 10 was the most μ-selective compound synthesized. In conclusion, our data indicate that the absence of a hydrogen-bond donor on the C6 oxygen enhances rather than impedes the in vitro affinity of naltrexol derivatives for the MOR. Additionally, data also suggest that increasing the bulk around C6 may allow control of subtype selectivity within these compound series.  相似文献   

13.
There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized ‘carba’-analogues of the highly potent μ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Kiμ = 95.2 nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A re-evaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in μ opioid analgesics reduces MOR binding affinity by 2–3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile.  相似文献   

14.
Salvinorin A (1), the main active ingredient of Salvia divinorum, is a potent and selective κ-opioid receptor (KOPR) agonist. A series of C-12 triazole analogs and the oxadiazole (4) analog of 1 are synthesized and screened for binding affinity at κ, μ (MOPR), or δ (DOPR). Surprisingly, all triazole analogs have shown negligible binding affinity at opioid receptors and the oxadiazole 4, a reported MOPR and KOPR antagonist, exhibits very low affinities to opioid receptors and no antagonism in our binding assays. These results suggest that electronic factors that may affect either the electron density of hydrogen bond acceptor at C-12 or hydrophobic interactions between C-12 moiety and KOPR are critical to C-12 analog’s affinity for KOPR.  相似文献   

15.
We designed and synthesized of 1,3,5-trioxazatriquinanes with o- or p-hydroxyphenyl rings as analogs of the κ opioid receptor agonist SYK-146 with m-hydroxyphenyl groups. Although almost all tested compounds did not bind to the opioid receptors, only 17b (SYK-524) with two o-hydroxyphenyl rings showed moderate or potent binding affinities and exhibited agonistic activities for the three opioid receptor types. Because the basicity of the nitrogen atom in the 1,3,5-trioxazatriquinane structure was predicted to be very low due to the electron withdrawing effect of the three oxygen atoms, SYK-524 was a novel non-morphinan and nonpeptidic opioid universal agonist lacking a basic nitrogen atom.  相似文献   

16.
We have investigated a series of phenolic diaryl amino piperidine delta opioid receptor agonists, establishing the importance of the phenol functional group and substitution on the piperdine nitrogen for delta agonist activity and selectivity versus the mu and kappa opioid receptors. This study uncovered compounds with improved agonist potency and selectivity compared to the standard, non-peptidic delta agonist SNC-80. In vivo anti-nociceptive activity of analog 8e in two rodent models is discussed, demonstrating the potential of delta agonists to provide a novel mechanism for pain relief.  相似文献   

17.
Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent μ-selective agonists (Structures 5 and 12) as well as potent and selective δ-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure–activity data.  相似文献   

18.
Herein we report the identification of (+)-N-(2-((1H-pyrazol-1-yl)methyl)-3-((1R,3r,5S)-6′-fluoro-8-azaspiro[bicyclo[3.2.1]octane-3,1′-isochroman]-8-yl)propyl)-N-[3H]-methylacetamide {[3H]PF-7191 [(+)-11]} as a promising radiotracer for the nociceptin opioid peptide (NOP) receptor. (+)-11 demonstrated high NOP binding affinity (Ki = 0.1 nM), excellent selectivity over other opioid receptors (>1000×) and good brain permeability in rats (Cb,u/Cp,u = 0.29). Subsequent characterization of [3H](+)-11 showed a high level of specific binding and a brain bio-distribution pattern consistent with known NOP receptor expression. Furthermore, the in vivo brain binding of [3H](+)-11 in rats was inhibited by a selective NOP receptor antagonist in a dose–responsive manner. This overall favorable profile indicated that [3H](+)-11 is a robust radiotracer for pre-clinical in vivo receptor occupancy (RO) measurements and a possible substrate for carbon-11 labeling for positron emission tomography (PET) imaging in higher species.  相似文献   

19.
We discovered a novel compound, 5-methyl-1,4,5,7-tetrahydro-2,5-ethanoazocino[4,3-b]indol-6(3H)-one sulfuric acid salt (DS39201083), which was formed by derivatization of a natural product, conolidine. DS39201083 had a unique bicyclic skeleton and was a more potent analgesic than conolidine, as revealed in the acetic acid-induced writhing test and formalin test in ddY mice. The compound showed no agonist activity at the mu opioid receptor.  相似文献   

20.
We identified (5′S)-10′-fluoro-6′-methyl-5′,6′-dihydro-3′H-spiro[cyclopropane-1,4′-[2,6]diaza[2,5]methano[2,6]benzodiazonin]-7′(1′H)-one, 22b (DS34942424) with a unique and original bicyclic skeleton. 22b showed an orally potent analgesic in the acetic acid-induced writhing test and formalin test in ddY mice without sedation. Moreover, 22b did not exhibit mu opioid receptor agonist activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号