共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m2) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m2). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m2). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. 相似文献
2.
《New biotechnology》2015,32(2):272-281
Schematic representation of (A). MFC configured with Membrane electrode assembly (MFC-A). (B). Structure of electrode with current collector. (C). Configuration used for MFC-B and MFC-C. The only difference is the presence of copper wire in MFC-C instead of current collector.
3.
The incentive for developing microbial cell factories for production of fuels and chemicals comes from the ability of microbes to deliver these valuable compounds at a reduced cost and with a smaller environmental impact compared to the analogous chemical synthesis. Another crucial advantage of microbes is their great biological diversity, which offers a much larger “catalog” of molecules than the one obtainable by chemical synthesis. Adaptation to different environments is one of the important drives behind microbial diversity. We argue that the Red Sea, which is a rather unique marine niche, represents a remarkable source of biodiversity that can be geared towards economical and sustainable bioproduction processes in the local area and can be competitive in the international bio-based economy. Recent bioprospecting studies, conducted by the King Abdullah University of Science and Technology, have established important leads on the Red Sea biological potential, with newly isolated strains of Bacilli and Cyanobacteria. We argue that these two groups of local organisms are currently most promising in terms of developing cell factories, due to their ability to operate in saline conditions, thus reducing the cost of desalination and sterilization. The ability of Cyanobacteria to perform photosynthesis can be fully exploited in this particular environment with one of the highest levels of irradiation on the planet. We highlight the importance of new experimental and in silico methodologies needed to overcome the hurdles of developing efficient cell factories from the Red Sea isolates. 相似文献
4.
Biosynthesis of nano-scale platinum and palladium was achieved via enzymatically-mediated deposition of metal ions from solution.
The bio-accumulated Pt(0) and Pd(0) crystals were dried, applied onto carbon paper and tested as anodes in a polymer electrolyte
membrane (PEM) fuel cell for power production. Up to 100% and 81% of the maximum power generation was achieved by the bio-Pt
and bio-Pd catalysts, respectively, compared to commercial fuel cell grade Pt catalyst. Hence, biomineralisation could pave
the way for economical production of fuel cell catalysts since previous studies have shown that precious metals can be biorecovered
from wastes into catalytically active bionanomaterials. 相似文献
5.
B E Nordenstr?m 《Physiological chemistry and physics and medical NMR》1989,21(4):265-278
The neuron and its vascular-interstitial communications form, in vivo, an electrophoretic closed circuit. It is charged by ionic pumps in the nerve cell membrane at rest. Electrophoretic products of reaction collect at biologic electrodes, represented by redox proteins. These are located in the pre- and postsynaptic membranes and also in associated capillary membranes in the vascular part of the closed circuit. Efferent brain impulses start a series of events preceding muscle contraction. They open ionic channels in the membrane of the nerve cell body. A short-circuiting is thereby created, and cations flow into the cell. The membrane pumps cannot withstand this ionic inflow and maintain the transmembranous potential difference. The circuit is no longer driven but starts selfdriving reactions by previously formed products of reaction at the biological electrodes. Fuel cell reactions start at these and create in the axon the peak of the action potential. In vivo, the action potentials preceding the contracting of a muscle are transmitted through the circuit. In the vascular pathway of the closed circuit, the action potentials appear, by summation, as the previously described slow potential waves. The function of nerve cell matrices, as well as the nodes of Ranvier, are discussed. The proposed theory is in accordance with the vascular-interstitial-neuromuscular closed circuit. It provides new possibilities to explain the development of the action potential, transport and disappearance of various synaptic structures and the neurotransmitter. Technical analogues are presented to illustrate a new possible background mechanism for understanding structure and function in neuromuscular transmission. 相似文献
6.
Levin M 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(3):205-217
Significant progress in the molecular investigation of endogenous bioelectric signals during pattern formation in growing tissues has been enabled by recently developed techniques. Ion flows and voltage gradients produced by ion channels and pumps are key regulators of cell proliferation, migration, and differentiation. Now, instructive roles for bioelectrical gradients in embryogenesis, regeneration, and neoplasm are being revealed through the use of fluorescent voltage reporters and functional experiments using well-characterized channel mutants. Transmembrane voltage gradients (V(mem) ) determine anatomical polarity and function as master regulators during appendage regeneration and embryonic left-right patterning. A state-of-the-art recent study reveals that they can also serve as prepatterns for gene expression domains during craniofacial patterning. Continued development of novel tools and better ways to think about physical controls of cell-cell interactions will lead to mastery of the morphogenetic information stored in physiological networks. This will enable fundamental advances in basic understanding of growth and form, as well as transformative biomedical applications in regenerative medicine. 相似文献
7.
Nuclear pore complex assembly through the cell cycle: regulation and membrane organization 总被引:1,自引:0,他引:1
In eukaryotes, all macromolecules traffic between the nucleus and the cytoplasm through nuclear pore complexes (NPCs), which are among the largest supramolecular assemblies in cells. Although their composition in yeast and metazoa is well characterized, understanding how NPCs are assembled and form the pore through the double membrane of the nuclear envelope and how both processes are controlled still remains a challenge. Here, we summarize what is known about the biogenesis of NPCs throughout the cell cycle with special focus on the membrane reorganization and the regulation that go along with NPC assembly. 相似文献
8.
Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris 总被引:1,自引:0,他引:1
The effect of potassium on the water potential, the osmotic potential and the pressure potential in younger and older leaves of Phaseolus vulgaris grown in hydroponic culture was studied. Inadequate potassium supply resulted in an increase of the osmotic potential. In the older leaves the water potential was raised, in the younger leaves the pressure potential was depressed in the treatment insufficiently supplied with potassium as compared with leaves with an adequate potassium supply. Cell size of the younger leaves was smaller in the treatment with the low K+ supply in comparison with the leaves well supplied with K+ . Potassium had a beneficial effect on plant growth, especially on fresh matter production. The water status of leaves (water content, pressure potential, osmotic potential) responded more sensitively to potassium supply than dry matter production. Besides organic N and organic anions, K+ was the most abundant solute found in the press sap of the leaves. From the results it is concluded that K+ is indispensible for attaining an optimum potential (turgor) in young leaves which in turn has an impact on plant growth. 相似文献
9.
Intragenic suppressors of an OmpF assembly mutant and assessment of the roles of various OmpF residues in assembly through informational suppressors 下载免费PDF全文
We employed two separate genetic approaches to examine the roles of various OmpF residues in assembly. In one approach, intragenic suppressors of a temperature-sensitive OmpF assembly mutant carrying a W214E substitution were sought at 42 degrees C, or at 37 degrees C in a genetic background lacking the periplasmic folding factor SurA. In the majority of cases (58 out of 61 revertants), the suppressors mapped either at the original site (position 214) or two residues downstream from it. In the remaining three revertants that were obtained in a surA background, an alteration of N230Y was located 16 residues away from the original site. The N230Y suppressor also corrected OmpF315 assembly at 42 degrees C in a surA(+) background, indicating that the two different physiological environments imposed similar assembly constraints. The specificity of N230Y was tested against five different residues at position 214 of mature OmpF. Clear specificity was displayed, with maximum suppression observed for the original substitution at position 214 (E214) against which the N230Y suppressor was isolated, and no negative effect on OmpF assembly was noted when the wild-type W214 residue was present. The mechanism of suppression may involve compensation for a specific conformational defect. The second approach involved the application of informational suppressors (Su-tRNA) in combination with ompF amber mutations to generate variant OmpF proteins. In this approach we targeted the Y40, Q66, W214, and Y231 residues of mature OmpF and replaced them with S, Q, L, and Y through the action of Su-tRNAs. Thus, a total of 16 variant OmpF proteins were generated, of which three were identical to the parental protein, and two variants carrying W214Q and Y231Q substitutions were similar to assembly-defective proteins isolated previously (R. Misra, J. Bacteriol. 175:5049-5056, 1993). The results obtained from these analyses provided useful information regarding the compatibility of various alterations in OmpF assembly. 相似文献
10.
The parameters of the electrode region of an electrode microwave discharge in nitrogen are studied by emission spectroscopy. The radial and axial distributions of the intensities of the bands of the second (N2(C 3Π u → B 3Π g )) and first (N2(B 3Π g → A 3Σ u + )) positive systems of molecular nitrogen and the first negative system of nitrogen ions (N 2 + (B 2Σ u + → X 2Σ g + )), the radial profiles of the electric field E and the electron density N e , and the absolute populations of the vibrational levels v C = 0–4 of the C 3Π u excited state of N2 and the vibrational level v Bi = 0 of the B 2Σ u + excited state of a molecular nitrogen ion are determined. The population temperature of the first vibrational level T V of the ground electronic state X 1Σ g + of N2 and the excitation temperature T C of the C 3Π u state in the electrode region of the discharge are measured. The radius of the spherical region and the spatially integrated plasma emission spectra are studied as functions of the incident microwave power and gas pressure. A method for determining the electron density and the microwave field strength from the plasma emission characteristics is described in detail. 相似文献
11.
Making water flow: a comparison of the hydrodynamic characteristics of 12 different benthic biological flumes 总被引:1,自引:0,他引:1
Per R. Jonsson Luca A. van Duren Muriel Amielh Ragnhild Asmus Rebecca J. Aspden Darius Daunys Michael Friedrichs Patrick L. Friend Frédéric Olivier Nick Pope Elimar Precht Pierre-Guy Sauriau Estelle Schaaff 《Aquatic Ecology》2006,40(4):409-438
Flume tanks are becoming increasingly important research tools in aquatic ecology, to link biological to hydrodynamical processes. There is no such thing as a “standard flume tank”, and no flume tank is suitable for every type of research question. A series of experiments has been carried out to characterise and compare the hydrodynamic characteristics of 12 different flume tanks that are designed specifically for biological research. These facilities are part of the EU network BioFlow. The flumes could be divided into four basic design types: straight, racetrack, annular and field flumes. In each facility, two vertical velocity profiles were measured: one at 0.05 m s−1 and one at 0.25 m s−1. In those flumes equipped with Acoustic Doppler Velocimeters (ADV), time series were also recorded for each velocity at two heights above the bottom: 0.05 m and 20% of the water depth. From these measurements turbulence characteristics, such as TKE and Reynolds stress, were derived, and autocorrelation spectra of the horizontal along-stream velocity component were plotted. The flume measurements were compared to two sets of velocity profiles measured in the field.Despite the fact that some flumes were relatively small, turbulence was fully developed in all channels. Straight and racetrack flumes generally produced boundary layers with a clearly definable logarithmic layer, similar to measurements in the field taken under steady flow conditions. The two annular flumes produced relatively thin boundary layers, presumably due to secondary flows developing in the curved channels. The profiles in the field flumes also differed considerably from the expected log profile. This may either have been due the construction of the flume, or due to unsteady conditions during measurement. Constraints imposed by the different flume designs on the suitability for different types of boundary layer research, as well as scaling issues are discussed. 相似文献
12.
The purpose of this study was to clarify the differences of the community structure and the diversity of aquatic organisms (i) among sampling sites that the distances from inlets or outlets were different each other, and (ii) between the floodwater and the irrigation water during the crop season in a paddy field. The irrigation water was sampled from one inlet. The taxonomical groups and the number of aquatic organisms ranging in size from 30µm to 2cm in the floodwater and the irrigation water were surveyed approximately every 10days during the growth period of the rice plant. Aquatic organisms were classified mainly at the order level. Thirty-eight taxonomical groups of aquatic organisms were found in the floodwater, while 18 groups were found in the irrigation water. We were not able to find the differences of the community structure of aquatic organisms among the sites. In the floodwater, the number of taxonomical group increased and the community structure changed during the late flooding period (over 50days after the onset of flooding) at any site, while those in the irrigation water hardly changed. Although the community structure of aquatic organisms differed between the floodwater and the irrigation water throughout the flooding period, the differences became especially bigger during the late flooding period. Principal component analysis showed that three groups (Pennales, Dinoflagellida, Choreotrichida) characterized the community structure in the irrigation water. Their population densities tended to be the highest at the site near inlets and the lowest at the site far from inlets. 相似文献
13.
VERÓNICA FERREIRA ANA LÚCIA GONÇALVES DOUGLAS L. GODBOLD CRISTINA CANHOTO 《Global Change Biology》2010,16(12):3284-3296
Cold water woodland streams, where terrestrially derived organic matter fuels aquatic food webs, can be affected by increases in atmospheric CO2 concentrations, as these are predicted to lead to increases in water temperature and decreases in organic matter quality. In fact, elevated CO2 (580 ppm) decreased the initial phosphorus concentration of birch litter by 30% compared with litter grown under ambient conditions (380 ppm). Here, we first assessed the effect of differences in litter quality on mass loss, microbial colonization and conditioned litter quality after submersion in a mountain stream for 2 weeks. Leaching did not change the relative differences between litter types, while fungal biomass was two fold higher in elevated litter. We then offered this litter (conditioned ambient and elevated) to a stream detritivore that was kept at 10 and 15 °C to assess the individual and interactive effects of increased temperature and decreased litter quality on invertebrate performance. When given a choice, the detritivore preferred elevated litter, but only at 10 °C. When fed litter types singularly, there was no effect of litter quality on consumption rates; however, the effect of temperature depended on individual size and time of collection. Growth rates were higher in individuals fed ambient litter at 10 °C when compared with individuals fed elevated litter at 15 °C. Mortality did not differ between litter types, but was higher at 15 °C than at 10 °C. Increases in temperature led to alterations in the individual body elemental composition and interacted with litter type. The performance of the detritivore was therefore more affected by increases in temperature than by small decreases in litter quality. However, it seems conceivable that in a future global warming scenario the simultaneous increases in water temperature and decreases in litter quality might affect detritivores performance more than predicted from the effects of both factors considered individually. 相似文献
14.
Seasonal growth characteristics and biomass yield potential of 3 floating aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated in central Florida’s climatic conditions. Growth cycle (growth curve) of the plants was found to be complete when maximum plant density was reached and no additional increase in growth was recorded. Biomass yield per unit area and time was found to be maximum in the linear phase of the growth curve; plant density in this phase was defined as “operational plant density,” a density range in which a biomass production system is operated to obtain the highest possible yields. Biomass yields were found to be 106, 72, and41 t(drywt)ha-1yr-1, respectively, for water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), and pennywort (Hydrocotyle umbellata). Operational plant density was found to be in the range of 500–2,000 g dry wt m-2 for water hyacinth, 200–700 g dry wt m-2 for water lettuce, and 250–650 g dry wt m-2 for pennywort. Seasonality was observed in growth rates but not in operational plant density. Specific growth rate (% increase per day) was found to maximum at low plant densities and decreased as the plant density increased. Results show that water hyacinth and water lettuce can be successfully grown for a period of about 10 mo, while pennywort, a cool season plant, can be integrated into water hyacinth/water lettuce biomass production system to obtain high yields in the winter. 相似文献
15.
A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m2 was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m2 after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na+ and Ca2+) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation. 相似文献
16.
Dani Boix Jordi Sala Stéphanie Gascón Mònica Martinoy Jaume Gifre Sandra Brucet Anna Badosa Rocío López-Flores Xavier D. Quintana 《Hydrobiologia》2007,584(1):347-359
Coastal wetlands are characterized by a high biodiversity. At the same time, biodiversity is one of the main criteria used
to establish protection policy priorities, or to propose management actions. In this study, crustacean and aquatic insect
species richness in the Empordà wetlands was investigated. These two groups contribute in an important way to the total biodiversity,
and still they are seldom taken into account in the management of natural areas. Representative samples (38 points) of all
aquatic water body types in the Empordà wetlands were taken monthly (dip net with 250 μm mesh). Sampling was carried out between
1996 and 2000, but until present, only qualitative data have been extracted. A rich fauna of 125 crustacean taxa and 295 aquatic
insect taxa were found. Some environments were characterized by low richness and high singularity (isolated artesian freshwater
springs), some by high richness and high singularity (estuarine waters, brackish and meso-eutrophic freshwater wetlands),
and others by low richness and low singularity (hypertrophic freshwater wetlands and hyperhaline wetlands). Factors determining
singularity and richness are discussed. Comparison with crustacean richness of other western Mediterranean wetlands showed
a similar high species richness in our study sites, probably due to high spatial heterogeneity of these areas. 相似文献
17.
The action of antimicrotubular drugs (colchicine, vinblastine and copper) on the osmotic water flow through the wall of the urinary bladder of Rana temporaria has been studied. The osmotic gradient was made by five- or tenfold dilution of the internal Ringer solution. The water flow was estimated gravimetrically. The water flow was induced by pituitrin (50 milliunits/ml), cyclic AMP (cAMP, 0.5-10(-3) M) and nystatine (3.5-10(-5) M). Pituitrin and cAMP and all the antimicrotubular drugs were added from the serosal surface of the bladder. Nystatine was introduced with the help of a fixed polyethylene tube. Preincubation with colchicine lasted 4 hours and that with vinblastine and copper (CuSO4), 1 hour. The drug concentrations varied between 10(-5)--10(-4) M. All the drugs studied showed a significant inhibitory effect toward pituitrin. The action of cAMP on the water flow was seen inhibited in the presence of colchicine and copper. The nystatine induced water flow was supressed by copper, colchicine being in this case inactive. A conclusion is drawn that the inhibition of cAMP formation does not cause a decreased pituitrine effect in the presence of antimicrotubular drugs. It has been assumed that the microtubules may be involved in the directed water flow within the cell. 相似文献
18.
19.
Neutral processes and species sorting in benthic microalgal community assembly: effects of tidal resuspension 下载免费PDF全文
Benthic microalgae (BMA) provide vital food resources for heterotrophs and stabilize sediments with their extracellular secretions. A central goal in ecology is to understand how processes such as species interactions and dispersal, contribute to observed patterns of species abundance and distribution. Our objectives were to assess the effects of sediment resuspension on microalgal community structure. We tested whether taxa‐abundance distributions could be predicted using neutral community models (NCMs) and also specific hypotheses about passive migration: (i) As migration decreases in sediment patches, BMA α‐diversity will decrease, and (ii) As migration decreases, BMA community dissimilarity (β‐diversity) will increase. Co‐occurrence indices (checkerboard score and variance ratio) were also computed to test for deterministic factors, such as competition and niche differentiation, in shaping communities. Two intertidal sites (mudflat and sand bar) differing in resuspension regime were sampled throughout the tidal cycle. Fluorometry and denaturing gradient gel electrophoresis were utilized to investigate diatom community structure. Observed taxa‐abundances fit those predicted from NCMs reasonably well (R2 of 0.68–0.93), although comparisons of observed local communities to artificial randomly assembled communities rejected the null hypothesis that diatom communities were assembled solely by stochastic processes. No co‐occurrence tests indicated a significant role for competitive exclusion or niche partitioning in microalgal community assembly. In general, predictions about relationships between migration and species diversity were supported for local community dynamics. BMA at low tide (lowest migration) exhibited reduced α‐diversity as compared to periods of immersion at both mudflat and sand bar sites. β‐diversity was higher during low tide emersion on the mudflat, but did not differ temporally at the sand bar site. In between‐site metacommunity comparisons, low‐ and high‐resuspension sites exhibited distinct community compositions while the low‐energy mudflats contained higher microalgal biomass and greater α‐diversity. To our knowledge this is the first study to test the relevance of neutral processes in structuring marine microalgal communities. Our results demonstrate a prominent role for stochastic factors in structuring local BMA community assembly, although unidentified nonrandom processes also appear to play some role. High passive migration, in particular, appears to help maintain species diversity and structure communities in both sand and muddy habitats. 相似文献
20.
Seasonal growth characteristics and biomass yield potential of 4 small-leaf, floating, aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated for central Florida’s climatic conditions. Biomass yields were found to be 10.6, 11.3, 16.1, and 32.1 t (dry wt) har?1 yr?1, respectively, for azolla (Azolla caroliniana), giant duckweed (Spirodela polyrhiza), common duckweed (Lemna minor), and salvinia (Salvinia rotundifolia). Operational plant density was in the range of 10–80 g dry wt m?2 for azolla, 10–88 g dry wt m?2 for giant duckweed, 10–120 g dry wt m?2 for common duckweed, and 35–240 g dry wt m?2 for salvinia. Specific growth rate (% increase per day) was maximum at low plant densities and decreased as the plant density increased. Results suggest that small-leaf, floating plants may not be suitable in monoculture biomass production systems because of low biomass yields, but they may be suitable for inclusion in poly culture systems with larger aquatic plants. The high N content (crude protein = 20–33%) of small-leaf,floating plants suggests the use of biomass as animal feed. 相似文献