首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a novel series of 2-(5-(2-chloro-6-fluoroquinolin-3-yl)-3-(aryl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-ones (4a–l) and N-(4-(2-chloro-6-fluoroquinolin-3-yl)-6-(aryl)pyrimidin-2-yl)-2-morpholinoacetamides (7a–l) are described in the present paper. The chemical structures of compounds have been elucidated by IR, 1H NMR, 13C NMR and mass spectral data. Antimicrobial activity was measured against Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323) by serial broth dilution. Evaluation of antimicrobial activity showed that several compounds exhibited greater activity than reference drugs and thus could be promising new lead molecules.  相似文献   

2.
5-Methylphenanthridium derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity and cell division inhibitory activity against various Gram-positive and -negative bacteria. Among them, compounds 5A2, 5B1, 5B2, 5B3, 5C1 and 5C2 displayed the best on-target antibacterial activity with an MIC value of 4 µg/mL against B. subtilis ATCC9372 and S. pyogenes PS, showing over 2-fold better activity than sanguinarine. The SARs showed that the 5-methylphenanthridium derivatives with the alkyl side chains at the 2-postion, especially the straight alkyl side chains exerted better on-target antibacterial activity.  相似文献   

3.
Regioselective synthesis of a number of highly functionalized 3-benzylpyrimidino chromen-2-ones (4) were accomplished in a one pot three component reaction in acetic acid and determined their anti-microbial and anti-biofilm activities. Compounds 4o and 4p showed an excellent anti-microbial activity against Micrococcus luteus MTCC 2470 at a par with standard control (Ciprofloxacin) and exhibited best activity against Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121. Further, compounds 4h, 4i, 4m, 4n and 4q showed promising activity against Micrococcus luteus MTCC 2470, Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121. Whereas, compounds 4m showed very promising biofilm inhibition activity against Staphylococcus aureus MLS 16 MTCC 2940 and 4o, 4p showed very potent activity against Staphylococcus aureus MTCC 96 at a par with Ciprofloxacin used as standard control.  相似文献   

4.
The peptides containing β- and γ-amino acids, LA-Lys(Z)-PEA, P1; LA-Lys(Z)-β3,3-Ac6c-PEA, P2; LA-Orn(Z)-β3,3-Ac6c-PEA, P3; LA-Lys(Z)-Gpn-PEA, P4; LA-Orn(Z)-Gpn-PEA, P5; LA-Lys(Z)-γ4-Phe-PEA, P6, LA-γ4-Leu-Lys(Z)-PEA, P7 and LA-β3,3-Pip(Ac)-Lys(Z)-PEA, P8 were synthesized, characterized and evaluated against Gram-positive and Gram-negative bacteria. Among all, peptides P2, P3, P4 and P5 exhibited potent activity (MIC 6.25 μM) against S. aureus MTCC 737 and P. aeruginosa MTCC 424. In order to understand the efficacy of peptides and mechanism of action, time kill kinetics and fluorescence microscopic studies were performed against S. aureus and P. aeruginosa for the peptides P2, P3, P4 and P5. P4 took half time to show the bactericidal effect on P. aeruginosa and S. aureus in comparison to P2 at their 2x MICs. Fluorescence microscopic studies suggested that peptides P2 and P4 both killed the bacteria via membrane disruption. Further, P4 exhibited lowest haemolytic activity among active peptides and negligible cytotoxic activity against human cancer cell lines A-549, PC-3 and HCT-116 at its MIC.  相似文献   

5.
Muchimangins are benzophenone-xanthone hybrid polyketides produced by Securidaca longepedunculata. However, their biological activities have not been fully investigated, since they are minor constituents in this plant. To evaluate the possibility of muchimangins as antibacterial agent candidates, five muchimangin analogs were synthesized from 2,4,5-trimethoxydiphenyl methanol and the corresponding xanthones, by utilizing p-toluenesulfonic acid monohydrate for the Brønsted acid-catalysis. The antibacterial assays against Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and Gram-negative bacteria, Klebsiella pneumoniae and Escherichia coli, revealed that the muchimangin analogs (±)-1,3,6,8-tetrahydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (1), (±)-1,3,6-trihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (2), and (±)-1,3-dihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (3) showed significant activities against S. aureus, with MIC values of 10.0, 10.0, and 25.0 μM, respectively. Analogs (±)-1 and (±)-2 also exhibited antibacterial activities against B. subtilis, with MIC values of 50.0 and 12.5 μM, respectively. Furthermore, (+)-3 enhanced the antibacterial activity against S. aureus, with a MIC value of 10 μM.  相似文献   

6.
Novel (5S)-N-[3-(3-fluoro-4-{4-[2-oxo-4-(substituted aryl)-but-3-enoyl]-piperazin-1-yl}-phenyl)-2-oxo-oxazolidin-5-ylmethyl]-acetamide 3aj analogues were synthesized and their in vitro antibacterial activity was evaluated. Most of the compounds of series showed superior in vitro activity against Gram-positive resistant strains than linezolid. Compound 3f is the most potent compound in the series with 0.04–0.39 μg/mL MIC.  相似文献   

7.
An efficient domino protocol has been developed for the synthesis of new pyrimidine scaffolds, through a one-pot four-component cascade transformation via [Bmim]HSO4 ionic liquid mediated reaction, using an equimolar mixture of thiochroman-4-one, benzaldehyde, thiourea and 3-bromo-1-phenylpropan-1-one leading to the formation of a double electrophilic pyrimidine-2(5H)-thione intermediate. The intermediate regioselectively undergoes cyclization through intramolecular NH bond activation followed by CS bond formation leading to highly functionalized thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidines. The ionic liquid operates efficiently under mild conditions. The recyclability and scope for recovery of the ionic liquid makes this protocol environmentally benign. Further, the compounds 5d, 5g and 5k showed promising antimicrobial activity against the tested Gram-positive bacterial strains. Among them, the compound 5d was identified as a lead molecule exhibiting promising anti-biofilm activity towards Staphylococcus aureus MTCC 96, Bacillus subtilis MTCC 121, Staphylococcus aureus MLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with IC50 values of 2.1, 1.9, 2.4 and 5.3 μg/mL, respectively. Further, the compound 5d showed increased levels of intracellular ROS accumulation in Staphylococcus aureus MTCC 96 suggesting that oxidative stress resulted in bacterial cell lysis and death.  相似文献   

8.
An efficient synthesis of thiochromeno[3,4-d]pyrimidine derivatives has been achieved successfully via a one-pot three-component reaction of thiochrome-4-one, aromatic aldehyde and thiourea in the presence of 1-butyl-3-methyl imidazolium hydrogen sulphate [Bmim]HSO4. This new protocol has the advantages of environmental friendliness, high yields, short reaction times, and convenient operation. Furthermore, among all the tested derivatives, compounds 4b and 4c exhibited promising antibacterial, minimum bactericidal concentration and anti-biofilm activities against Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS16 MTCC 2940 and Bacillus subtilis MTCC 121. The compound 4c also showed promising intracellular ROS accumulation in Staphylococcus aureus MLS16 MTCC 2940 comparable to that of ciprofloxacin resulting in apoptotic cell death of the bacterium.  相似文献   

9.
A novel library of Schiff base analogues (5aq) were synthesized by the condensation of methyl-12-aminooctadec-9-enoate and different substituted aromatic aldehydes. The synthesized compounds were thoroughly characterized by spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, ESI-MS and HRMS). The Schiff base analogues with different substitutions were screened for in vitro antibacterial activity against 7 different bacterial strains. Among these, the compounds with electron withdrawing substituent, namely chlorine (5a) and electron donating substituents, namely hydroxy (5n) and methoxy (5o), were found to exhibit excellent to good antimicrobial activities (MIC value 9–18 μM) against Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS-16 MTCC 2940 and Bacillus subtilis MTCC 121. The products were also screened for anti-biofilm and MBC (Minimum Bactericidal Concentration) activities which exhibited promising activities.  相似文献   

10.
A novel series of 3-O-arylalkylcarbamoyl-3-O-descladinosyl-9-O-(2-chlorobenzyl)oxime clarithromycin derivatives, were designed, synthesized and evaluated for their in vitro antibacterial activity. These derivatives were found to have strong activity against susceptible and resistant bacteria strains. Among them, compounds 7a and 7q showed the most potent activity (0.125?µg/mL) against erythromycin-resistant S. pneumoniae expressing the mefA gene. Moreover, compounds 7f, 7i, 7p and 7z displayed remarkably improved activity (4?µg/mL) against penicillin-resistant S. aureus ATCC31007, and compounds 7a, 7b, 7f, 7p and 7z showed improved activity (8?µg/mL) against erythromycin-resistant S. pyogenes. In particular, compound 7z exhibited potent and balanced activity against the tested drug-susceptible and -resistant bacterial strains.  相似文献   

11.
A series of novel compounds 6-amino-1-((1,3-diphenyl-1H-pyrazole-4-yl)methyleneamino)-4-(aryl)-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles (4at) were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral data. These compounds were screened for their in vitro antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes (Gram positive), Escherichia coli, Pseudomonas aeruginosa (Gram negative) by serial broth dilution and cytotoxic activity (NIH 3T3 & HeLa) by MTT assay. The results indicated that compounds 4g, 4i, 4m, 4o, 4r and 4t exhibit potent antibacterial activity against bacterial strains at non-cytotoxic concentrations.  相似文献   

12.
A series of novel 3-O-(3-aryl-E-2-propenyl)clarithromycin derivatives 8 and 3-O-(3-aryl-2-propargyl)clarithromycin derivatives 11 were designed, synthesized, and evaluated for their in vitro antibacterial activities. Compared with 8c and 11c (Ar was 5-pyrimidyl), 3-O-(3-(5′-pyrimidyl)-Z-1-propenyl) counterpart 6c displayed 4- to 64-fold more potent activities against erythromycin-susceptible Staphylococcus aureus and Streptococcus pneumoniae. Moreover, the activities of 6c, 8c, and 11c against erythromycin-resistant S. aureus and S. pneumoniae were in general 4-fold higher than those of the reference compound, clarithromycin and azithromycin.  相似文献   

13.
Two triorganotin(IV) carboxylates [nBu3SnOL]n (KK1) and [Ph3SnOL]n (KK2) have been prepared by the reactions of (E)-3-(4-(diphenylamino)phenyl)acrylic acid (HL) with n(Bu3Sn)2O and Ph3Sn(OH), respectively. Complexes KK1 and KK2 have been structurally characterized by IR, elemental analysis and X-ray crystallography, confirming that both complexes possess infinite 1D chain structures. It’s exciting to discover that KK1 and KK2 exhibit strong solid-state luminescence emission while the HL almost quenches. Furthermore, both complexes were assayed for in vitro antibacterial activity against two Gram-positive bacterial strains (Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538) and two Gram-negative bacterial strains (Pseudomonas aeruginosa ATCC 13525 and Escherichia coli ATCC 35218) by MTT method. Complex KK2 exhibited powerful antibacterial activities against S. aureus with MIC value of 0.78 μg/mL, which was superior to the positive controls penicillin G. On the basis of the biological results, structure-activity relationships were discussed.  相似文献   

14.
A series of novel 1,2,3-triazole-adamantylacetamide hybrids 5au, designed by combining bioactive fragments from antitubercular I-A09 and substituted adamantyl urea, were synthesized using copper catalyzed click chemistry. N-(1-Adamantyl)-2-azido acetamide 3 prepared from 1-adamantylamine was reacted with a series of alkyl/aryl acetylenes in the presence of copper sulfate and sodium ascorbate to give new analogues 5au in very good yields. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294), resulted N-(1-adamantan-1-yl)-2-(4-(phenanthren-2-yl)-1H-1,2,3-triazol-1-yl)acetamide (5t) as most promising lead MIC: 3.12 μg/mL) with selectivity index >15.  相似文献   

15.
C-5-substituted triazole-oxazolidinones were synthesized using a bromide catalyzed cycloaddition between aryl isocyanates and epibromohydrin followed by a three-component Huisgen cycloaddition. The library of compounds was screened for antibacterial activity against Mycobacterium smegmatis ATCC 14468, Bacillus subtilis ATCC 6633, and Enterococcus faecalis ATCC 29212. Notably, the 3-(4-acetyl-phenyl)-5-(1H-1,2,3-triazol-1-yl)methyl)-oxazolidin-2-one (18) showed an MIC of 1 μg/mL against M. smegmatis ATCC 14468, fourfold lower than the MIC measured for isoniazid.  相似文献   

16.
Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1 × MIC and 4 × MIC.  相似文献   

17.
A series of previously reported amino sugar-functionalized intercalating agents, 3-14, were evaluated in two antibacterial assays (paper disk diffusion and 96-well microdilution) against Bacillus atrophaeus, ATCC 9372 and Escherichia coli, ATCC 47076. Although none of the compounds were active against this E. coli strain, several showed activity against B. atrophaeus. In anticipation of the need for larger amounts of these compounds for future structure-activity relationship studies, improved routes to 11-14 were developed.  相似文献   

18.
A series of novel 11-O-aralkylcarbamoyl-3-O-descladinosylclarithromycin derivatives were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed potent activity against erythromycin-susceptible S. pyogenes, erythromycin-resistant S. pneumoniae A22072 expressing the mef gene and S. pneumoniae AB11 expressing the mef and erm genes. Besides, most of the target compounds exhibited moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372. In particular, compounds 11a, 11b, 11c, 11e, 11f and 11h were found to exert favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.015–0.125?μg/mL. Furthermore, compounds 10e, 11a, 11b and 11c showed superior activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.25–0.5?μg/mL. Additionally, compound 11c was the most effective against all the erythromycin-resistant S. pneumoniae strains (A22072, B1 and AB11), exhibiting 8-, 8- and 32-fold more potent activity than clarithromycin, respectively.  相似文献   

19.
Four new lignans, (7′R,8′S)-4,4'-Dimethoxy-strebluslignanol (1), 3'-Hydroxy-isostrebluslignaldehyde (2), 3,3'-Methylene-bis(4-hydroxybenzaldehyde) (3), and 4-Methoxy-isomagnaldehyde (4), and six known lignans (510), were isolated from the roots of Streblus asper. The structures of these molecules were elucidated through various spectroscopic methods of analysis, including 1D and 2D NMR. The stereochemistry at the chiral centres was determined using the CD spectrum and from coupling constant and optical rotation data. Compounds 1–6 showed good antimicrobial activity against Saccharomyces cerevisiae (ATCC 9763), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (ATCC 11775), and Staphylococcus aureus (ATCC 25923), with MIC values ranging from 0.0150 to 0.0940 μM.  相似文献   

20.
Phytochemical investigation of a 90 % ethanol extract of Pachysandra terminalis Sieb. Et Zucc led to the isolation of a novel alkaloid, terminamine T (1); a new pregnane-type alkaloid, terminamine U (2); and four known pregnane-type alkaloids (3-6). The structures of these compounds were elucidated on the basis of nuclear magnetic resonance spectra, mass spectrometry data, single-crystal X-ray diffraction, and by a comparison with data from the literature. All compounds were evaluated for their antibacterial activities against gram-positive (S. aureus, ATCC 29213) and gram-negative (E. coli, ATCC 25922) bacteria. Compounds 2-6 exhibited generally modest to poor antibiotic properties. Furthermore, compound 2 showed antibacterial activity against methicillin-resistant Staphylococcus epidermidis (MRSE), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus aureus USA300 (LAC) with a minimal inhibitory concentration (MIC) value of 32 μg/mL (75 μM) and minimum bactericidal concentration (MBC) values of 64, 128, and 128 μg/mL (150, 300, and 300 μM), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号