首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucocorticoids (GCs) are commonly used to treat inflammatory disease; unfortunately, the long-term use of these steroids leads to a large number of debilitating side effects. The antiinflammatory effects of GCs are a result of GC receptor (GR)-mediated inhibition of expression of proinflammatory genes as well as GR-mediated activation of antiinflammatory genes. Similarly, side effects are most likely due to both activated and repressed GR target genes in affected tissues. An as yet unachieved pharmaceutical goal is the development of a compound capable of separating detrimental side effects from antiinflammatory activity. We describe the discovery and characterization of AL-438, a GR ligand that exhibits an altered gene regulation profile, able to repress and activate only a subset of the genes normally regulated by GCs. When tested in vivo, AL-438 retains full antiinflammatory efficacy and potency comparable to steroids but its negative effects on bone metabolism and glucose control are reduced at equivalently antiinflammatory doses. The mechanism underlying this selective in vitro and in vivo activity may be the result of differential cofactor recruitment in response to ligand. AL-438 reduces the interaction between GR and peroxisomal proliferator-activated receptor gamma coactivator-1, a cofactor critical for steroid-mediated glucose up-regulation, while maintaining normal interactions with GR-interacting protein 1. This compound serves as a prototype for a unique, nonsteroidal alternative to conventional GCs in treating inflammatory disease.  相似文献   

2.
The radiosynthesis and the radiopharmacological characterization of [(11)C]AL-438 as a nonsteroidal ligand for the glucocorticoid receptor (GR) is described. Radiolabeling of the corresponding desmethyl precursor 10 with [(11)C]MeI gave [(11)C]AL-438 in decay-corrected radiochemical yields of 30+/-4% (based upon [(11)C]CO(2)) within 35 min at a specific radioactivity of 10-15 GBq/micromol at the end-of-synthesis. The radiopharmacological evaluation of [(11)C]AL-438 involved biodistribution and small animal PET imaging in rats, and autoradiography studies using rat brain sections. Biodistribution studies were performed in male Wistar rats and demonstrated high radioactivity uptake in pituitary and brain. However, the inability of high dose corticosterone to block binding would suggest that the radioactivity accumulation in the brain was not receptor-mediated.  相似文献   

3.
Park J  Kim J  Lee T  Lim M 《Biophysical journal》2008,94(11):L84-L86
Femtosecond vibrational spectroscopy was used to probe a functionally important dynamics and residual structure of myoglobin unfolded by 4 M guanidine HCl. The spectra of the dissociated CO indicated that the residual structure of unfolded myoglobin (Mb) forms a few hydrophobic cavities that could accommodate the dissociated ligand. Geminate rebinding (GR) of CO to the unfolded Mb is three-orders-of-magnitude faster and more efficient than the native Mb but similar to a model heme in a viscous solvent, suggesting that the GR of CO to heme is accelerated by the longer retention of the dissociated ligand near the Fe atom by the poorly-structured protein matrix of the unfolded Mb or viscous solvent. The inefficient GR of CO in native Mb, while dissociated CO is trapped in the primary heme pocket located near the active binding site, indicates that the tertiary structure of the pocket in native Mb plays a functionally significant role.  相似文献   

4.
Adverse effects of glucocorticoids could be limited by developing new compounds that selectively modulate anti-inflammatory activity of the glucocorticoid receptor (GR). We have synthesized a novel series of steroidal GR ligands, including potent agonists, partial agonists and antagonists with a wide range of effects on inhibiting secretion of interleukin-6. Some of these new ligands were designed to directly impact conformational stability of helix-12, in the GR ligand-binding domain (LBD). These compounds modulated GR activity and glucocorticoid-induced gene expression in a manner that was inversely correlated to the degree of inflammatory response. In contrast, compounds designed to directly modulate LBD epitopes outside helix-12, led to dissociated levels of GR-mediated gene expression and inflammatory response. Therefore, these new series of compounds and their derivatives will be useful to dissect the ligand-dependent features of GR signaling specificity.  相似文献   

5.
6.
7.
We analyzed the reactivity of three different commercially available rat monoclonal antibodies raised against mouse laminin-alpha1beta1gamma1 (laminin-111), AL-1, AL-2, and AL-4. Using ELISA assays, Western blot analysis and immunostainings we present refined epitope maps for these three laminin monoclonals. AL-1 reacted, as predicted with laminin alpha1 chain. AL-4 has also been marketed as an alpha1 chain specific probe, but we show here that AL-4 detects mouse laminin beta1 chain, in the distal part of the coiled-coil region. AL-2 was predicted to react with all three chains near the cross-region, but seems to primarily react with laminin beta1 chain.  相似文献   

8.
Previous studies have shown that the exposure of molybdate-stabilized nontransformed glucocorticoid receptor (GR) of the chick embryonic neural retina to 0.4 M KCl dissociated the 9.5 S complex to a 5 S GR complex, which is an intermediate state in GR transformation. The present study was designed to characterize the 5 S GR complex. It shows that molybdate-stabilized nontransformed 9.5 S GR complex and 5 S GR interact with monoclonal antibodies (MAb) directed against 90 kDa heat shock protein (hsp90), as evidenced by the increase in the sedimentation velocity of these GR-complexes. Electrofocusing of the partially purified molybdate-stabilized nontransformed GR, prepared from [32P]-labeled neural retinas, and of the 5 S GR (derived from molybdate-stabilized preparation) showed that nontransformed GR complex, which has an apparent pI (pI') value of 5.0 +/- 0.2, and 5 S GR, which was resolved in a major peak with a pI' value of 5.8, are phosphorylated. Partially purified 5 S GR, cleared of molybdate and exposed to 25 degrees C, was resolved by electrofocusing into two phosphorylated fractions, one with a pI' value of 6.5, representing the monomeric GR form and the other with a pI' value of 5.1, apparently representing the acidic hsp90. The dissociation of hsp90 from the molybdate-cleared 5 S heterodimer seems to account for the decrease in the negative net charge of 5 S GR from pI' 6.5. Monomeric GR, derived from a molybdate-cleared, partially purified GR preparation, by the exposure to 25 degrees C, did not retain glucocorticoid-binding activity. Molybdate-stabilized 5 S GR was apparently re-assembled into the oligomeric nontransformed state when the salt concentration was reduced. This phenomenon was evident under the low-salt conditions of electrofocusing, by the shift in pI' value of GR from 5.8 to 5.0; and in glycerol density gradients containing 0.15 M KCl, by the shift in the sedimentation of the GR complex from 5 S to 9.5 S.  相似文献   

9.
The tumour suppressor p53 and the glucocorticoid receptor (GR) respond to different types of stress. We found that dexamethasone-activated endogenous and exogenous GR inhibit p53-dependent functions, including transactivation, up- (Bax and p21(WAF1/CIP1)) and down- (Bcl2) regulation of endogenous genes, cell cycle arrest and apoptosis. GR forms a complex with p53 in vivo, resulting in cytoplasmic sequestration of both p53 and GR. In neuroblastoma (NB) cells, cytoplasmic retention and inactivation of wild-type p53 involves GR. p53 and GR form a complex that is dissociated by GR antagonists, resulting in accumulation of p53 in the nucleus, activation of p53-responsive genes, growth arrest and apoptosis. These results suggest that molecules that efficiently disrupt GR-p53 interactions would have a therapeutic potential for the treatment of neuroblastoma and perhaps other diseases in which p53 is sequestered by GR.  相似文献   

10.
Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure.  相似文献   

11.
Light-chain amyloidosis (AL) is characterized by immunoglobulin light-chain fragments aggregating into amyloid fibrils that deposit extracellularly in vital organs such as the kidney, the heart, and the liver, resulting in tissue degeneration and organ failure, leading to death. Cardiac involvement is found in 50% of AL patients and presents the most severe cases with a life expectancy of less than a year after diagnosis. In this study, we have characterized the variable domain of a cardiac AL patient light chain called AL-09. AL-09 folds as a beta-sheet and is capable of forming amyloid fibrils both in the presence of sodium sulfate and in self-seeded reactions under physiological conditions. Glycosaminoglycans such as dermatan sulfate and heparin promote amyloid formation of self-seeded AL-09 reactions, while the glycosaminoglycan chondroitin sulfate A stabilized oligomeric intermediates and did not elongate the preformed fibrils (nucleus) present in the reaction. Finally, the histological dye Congo red, known to bind to the cross beta-sheet structure of amyloid fibrils, inhibits AL-09 amyloid fibril formation in the presence of sodium sulfate and in self-seeded reactions. This paper provides insight into the impact of different reagents on light-chain stability, structure, amyloid fibril formation, and inhibition.  相似文献   

12.

Background

Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively.

Results

Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively.

Conclusions

Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders.  相似文献   

13.
采用蛋白组学方法筛选穿心莲内酯衍生物(AL-1)抗过氧化氢诱导胰岛RIN-mβ细胞凋亡的差异蛋白质分子并探讨其作用分子机制.结果显示:AL-1浓度依赖性地提高H2O2处理的胰岛RIN-mβ细胞的存活率.经蛋白组学研究分析,成功地鉴定了18个与凋亡、应激等相关的蛋白,包括Prohibitin、Shmt2、RhoGDP-dissociationinhibitor-1、Galectin-1、Cyt b5、Hsps等;与对照组(H2O2)相比,处理组(AL-1+H2O2)中,有9个表达上调的蛋白和9个表达下调的蛋白.AL-1通过调控与细胞凋亡、应激等相关的蛋白发挥其抗H2O2诱导的凋亡作用.  相似文献   

14.
SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors.  相似文献   

15.
Altered dimer interface decreases stability in an amyloidogenic protein   总被引:1,自引:0,他引:1  
Amyloidoses are devastating and currently incurable diseases in which the process of amyloid formation causes fatal cellular and organ damage. The molecular mechanisms underlying amyloidoses are not well known. In this study, we address the structural basis of immunoglobulin light chain amyloidosis, which results from deposition of light chains produced by clonal plasma cells. We compare light chain amyloidosis protein AL-09 to its wild-type counterpart, the kappaI O18/O8 light chain germline. Crystallographic studies indicate that both proteins form dimers. However, AL-09 has an altered dimer interface that is rotated 90 degrees from the kappaI O18/O8 dimer interface. The three non-conservative mutations in AL-09 are located within the dimer interface, consistent with their role in the decreased stability of this amyloidogenic protein. Moreover, AL-09 forms amyloid fibrils more quickly than kappaI O18/O8 in vitro. These results support the notion that the increased stability of the monomer and delayed fibril formation, together with a properly formed dimer, may be protective against amyloidogenesis. This could open a new direction into rational drug design for amyloidogenic proteins.  相似文献   

16.
To delineate the cellular targets and mechanisms by which glucocorticoids (GCs) exert their actions, we generated mice in which a green fluorescent protein (GFP)-GC receptor (GR) fusion gene is knocked into the GR locus. In these mice, the GFP-GR protein, which is functionally indistinguishable from endogenous GR, allows the tracking and quantitation of GR expression in single living cells. In GFP-GR thymus, GR expression is uniform among embryonic thymocyte subpopulations but gradually matures over a 3-wk period after birth. In the adult, GR is specifically induced to high levels in CD25(+)CD4(-)CD8(-) thymocytes and returns to basal levels in CD4(+)CD8(+) thymocytes of wild-type and positively selecting female HY TCR-transgenic mice, but not negatively selecting male HY TCR-transgenic mice. In GFP-GR/recombinase-activating gene 2(-/-) thymocytes, GR expression is down-regulated by pre-TCR complex stimulation. Additionally, relative GR expression is dissociated from GC-induced apoptosis in vivo. Results from these studies define differential GR expression throughout ontogeny, suggest pre-TCR activation as a specific mechanism of GR down-regulation, define immature CD8(+) thymocytes as novel apoptosis-sensitive GC targets, and separate receptor abundance from susceptibility to apoptosis across thymocyte populations.  相似文献   

17.
Light chain amyloidosis is an incurable protein misfolding disease where monoclonal immunoglobulin light chains misfold and deposit as amyloid fibrils, causing organ failure and death. Previously, we determined that amyloidogenic light chains AL-09 and AL-103 do not form fibrils at pH 10 (tyrosine pK(a)). There are three tyrosine residues (32, 91, and 96) clustered in the dimer interface, interacting differently in the two light chain proteins due to their two different dimer conformations. These tyrosines may be ionized at pH 10, causing repulsion and inhibiting fibril formation. Here, we characterize single and double Tyr-to-Phe mutations in AL-09 and AL-103. All AL-09 Tyr-to-Phe mutants form fibrils at pH 10, whereas none of the AL-103 mutants form fibrils at pH 10. NMR studies suggest that although both AL-09 and AL-103 present conformational heterogeneity, only AL-09 favors dimer conformations where tyrosine residues mediate crucial interactions for amyloid formation.  相似文献   

18.
A new series of ligands for the glucocorticoid receptor (GR) is described. SAR development was guided by docking 3 into the GR active site and optimizing an unsubstituted phenyl ring for key interactions found in the steroid A-ring binding pocket. To identify compounds with an improved side effect profile over marketed steroids the functional activity of compounds was evaluated in cell based assays for transactivation (aromatase) and transrepression (IL-6). Through this effort, 36 has been identified as a partial agonist with a dissociated profile in these cell based assays.  相似文献   

19.
We examined the internal mobility of the estrogen receptor DNA-binding domain (ER DBD) using NMR15N relaxation measurements and compared it to that of the glucocorticoid receptor DNA-binding domain (GR DBD). The studied protein fragments consist of residues Arg183-His267 of the human ER and residues Lys438-Gln520 of the rat GR. The15N longitudinal (R1) and transverse (R2) relaxation rates and steady state {1H}-15N nuclear Overhauser enhancements (NOEs) were measured at 30 degrees C at1H NMR frequencies of 500 and 600 MHz. The NOE versus sequence profile and calculated order parameters for ER DBD backbone motions indicate enhanced internal dynamics on pico- to nanosecond time-scales in two regions of the core DBD. These are the extended strand which links the DNA recognition helix to the second zinc domain and the larger loop region of the second zinc domain. The mobility of the corresponding regions of the GR DBD, in particular that of the second zinc domain, is more limited. In addition, we find large differences between the ER and GR DBDs in the extent of conformational exchange mobility on micro- to millisecond time-scales. Based on measurements of R2as a function of the15N refocusing (CPMG) delay and quantitative (Lipari-Szabo-type) analysis, we conclude that conformational exchange occurs in the loop of the first zinc domain and throughout most of the second zinc domain of the ER DBD. The conformational exchange dynamics in GR DBD is less extensive and localized to two sites in the second zinc domain. The different dynamical features seen in the two proteins is consistent with previous studies of the free state structures in which the second zinc domain in the ER DBD was concluded to be disordered whereas the corresponding region of the GR DBD adopts a stable fold. Moreover, the regions of the ER DBD that undergo conformational dynamics on the micro- to millisecond time-scales in the free state are involved in intermolecular protein-DNA and protein-protein interactions in the dimeric bound state. Based on the present data and the previously published dynamical and DNA binding properties of a GR DBD triple mutant which recognize an ER binding site on DNA, we argue that the free state dynamical properties of the nuclear receptor DBDs is an important element in molecular recognition upon DNA binding.  相似文献   

20.
Glutathione reductase (GR) is an essential enzyme for the glutathione-mediated detoxification of peroxides because it catalyzes the reduction of glutathione disulfide. GR was purified from bovine brain 5,000-fold with a specific activity of 145 U/mg of protein. The homogeneity of the enzyme was proven by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the gel. The purified GR from bovine brain is a dimer of two subunits that have an apparent molecular mass of 55 kDa. The purified GR was used to generate a rabbit antiserum with the intention to localize GR in brain cells. The antiserum was useful for the detection of GR by double-labeling immunocytochemical staining in astroglia-rich and neuron-rich primary cultures from rat brain. In homogenates of these cultures, no significant difference in the specific activities of GR was determined. However, not all cell types present in these cultures showed identical staining intensity for GR. In astroglia-rich primary cultures, strong GR immunoreactivity was found in cells positive for the cellular markers galactocerebroside and C3b (antibody Ox42), indicating that oligodendroglial and microglial cells, respectively, contain GR. In contrast, only weak immunoreactivity for GR was found in cells positive for glial fibrillary acidic protein. In neuron-rich primary cultures, GAP43-positive cells stained with the antiserum against GR. These data demonstrate that, in cultures of neural cells, neurons, oligodendroglial cells, and microglial cells express high levels of GR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号