首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.  相似文献   

2.
Protein folding by chaperonins is powered by ATP binding and hydrolysis. ATPase activity drives the folding machine through a series of conformational rearrangements, extensively described for the group I chaperonin GroEL from Escherichia coli but still poorly understood for the group II chaperonins. The latter--archaeal thermosome and eukaryotic TRiC/CCT--function independently of a GroES-like cochaperonin and are proposed to rely on protrusions of their own apical domains for opening and closure in an ATP-controlled fashion. Here we use small-angle neutron scattering to analyze structural changes of the recombinant alpha-only and the native alphabeta-thermosome from Thermoplasma acidophilum upon their ATPase cycling in solution. We show that specific high-salt conditions, but not the presence of MgATP alone, induce formation of higher order thermosome aggregates. The mechanism of the open-closed transition of the thermosome is strongly temperature-dependent. ATP binding to the chaperonin appears to be a two-step process: at lower temperatures an open state of the ATP-thermosome is predominant, whereas heating to physiological temperatures induces its switching to a closed state. Our data reveal an analogy between the ATPase cycles of the two groups of chaperonins and enable us to put forward a model of thermosome action.  相似文献   

3.
Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.  相似文献   

4.
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate FRET, and the initial kinetics of GroEL ATPase activity. We conclude that the cycle consists of two successive timers of approximately 3 s and approximately 5 s duration. During the first timer, GroEL is bound to ATP, substrate protein, and GroES. When the first timer ends, the substrate protein is released into the central cavity and folding begins. ATP hydrolysis and phosphate release immediately follow this transition. ADP, GroES, and substrate depart GroEL after the second timer is complete. This mechanism explains how GroES binding to a GroEL-substrate complex encapsulates the substrate rather than allowing it to escape into solution.  相似文献   

5.
The molecular chaperone, GroEL, facilitates correct protein folding and inhibits protein aggregation. The function of GroEL is often, though not invariably, dependent on the co-chaperone, GroES, and ATP. In this study it is shown that GroEL alone substantially reduces the inactivation of purified Ca(++)-ATPase from rabbit skeletal muscle sarcoplasmic reticulum. In the absence of GroEL, the enzyme became completely inactive in about 45-60 hours when kept at 25 degrees C, while in the presence of an equimolar amount of GroEL, the enzyme remained approximately 80% active even after 75 hours. Equimolar amounts of BSA or lysozyme were unable to protect the enzyme from inactivation under identical conditions. Analysis by SDS-PAGE showed GroEL was acting by blocking the aggregation of ATPase at 25 degrees C. GroEL was not as effective in protection at -20 degrees C or 4 degrees C. These results are discussed in the context of current models of the GroEL mechanism.  相似文献   

6.
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.  相似文献   

7.
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring.  相似文献   

8.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Folding assistance and ATPase activity of GroEL are based on the existence of different conformations. In order to characterise these conformations, published data on steady state ATPase activity in the absence of GroES were reanalysed simultaneously in terms of the Nested MWC model. This model is a hierarchical extension of the symmetry-model of Monod et al. [J. Mol. Biol. 12 (1965) 88]. An unique set of GroEL specific parameters was obtained. This set was supported by comparison of predictions arising from this set of values with experimental data for hydrolysis of ATP in the presence of ADP and ATPgammaS, binding of ATPgammaS and ADP to GroEL in the absence of ATP, and binding of ATP as monitored by fluorescence labelling. Thus, for the first time, multiple data sets for the interaction of nucleotides with GroEL are described quantitatively by an allosteric model. A noteworthy feature of our model is that no negative cooperativity in ATP binding occurs in accordance to experimental observations. Furthermore, the model also includes the existence of a conformation with very high ATPase activity. Such a conformation might be of importance at a certain stage in the folding cycle.  相似文献   

10.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼150 h (∼6 days), providing a good model to characterize the football-shaped complex.  相似文献   

11.
M K Hayer-Hartl  F Weber    F U Hartl 《The EMBO journal》1996,15(22):6111-6121
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

12.
The Escherichia coli chaperonin GroEL is a complex of identical subunit proteins (57 kDa each) arranged in a back-to-back stacking of two heptameric rings. Its hallmarks include nested positive intra-ring and negative inter-ring cooperativity in adenosine trisphosphate (ATP) binding and the ability to mediate the folding of newly transcribed and/or denatured substrate proteins. We performed unbiased molecular dynamics simulations of the GroEL subunit protein in explicit water both with and without the nucleotide KMgATP to understand better the details of the structural transitions that enable these behaviors. Placing KMgATP in the equatorial domain binding pocket of a t state subunit, which corresponds to a low ATP-affinity state, produced a short-lived (6 ns) state that spontaneously transitioned to the high ATP-affinity r state. The important feature of this transition is a large-scale rotation of the intermediate domain's helix M to close the ATP binding pocket. Pivoting of helix M is accompanied by counterclockwise rotation and slight deformation of the apical domain, important for lowering the affinity for substrate protein. Aligning simulation conformations into model heptamer rings demonstrates that the t-->r transition in one subunit is not sterically hindered by t state neighbors, but requires breakage of Arg(197)-Glu(386) intersubunit salt bridges, which are important for inter-ring positive cooperativity. Lowest-frequency quasi-harmonic modes of vibration computed pre- and post-transition clearly show that natural vibrations facilitate the transition. Finally, we propose a novel mechanism for inter-ring cooperativity in ATP binding inspired by the observation of spontaneous insertion of the side chain of Ala(480) into the empty nucleotide pocket.  相似文献   

13.
Chaperonins are megadalton ring assemblies that mediate essential ATP-dependent assistance of protein folding to the native state in a variety of cellular compartments, including the mitochondrial matrix, the eukaryotic cytosol, and the bacterial cytoplasm. Structural studies of the bacterial chaperonin, GroEL, both alone and in complex with its co-chaperonin, GroES, have resolved the states of chaperonin that bind and fold non-native polypeptides. Functional studies have resolved the action of ATP binding and hydrolysis in driving the GroEL-GroES machine through its folding-active and binding-active states, respectively. Yet the exact fate of substrate polypeptide during these steps is only poorly understood. For example, while binding involves multivalent interactions between hydrophobic side-chains facing the central cavity of GroEL and exposed hydrophobic surfaces of the non-native protein, the structure of any polypeptide substrate while bound to GroEL remains unknown. It is also unclear whether binding to an open GroEL ring is accompanied by structural changes in the non-native substrate, in particular whether there is an unfolding action. As a polypeptide-bound ring becomes associated with GroES, do the large rigid-body movements of the GroEL apical domains serve as another source of a potential unfolding action? Regarding the encapsulated folding-active state, how does the central cavity itself influence the folding trajectory of a substrate? Finally, how do GroEL and GroES serve, as recently recognized, to assist the folding of substrates too large to be encapsulated inside the machine? Here, such questions are addressed with the findings available to date, and means of further resolving the states of chaperonin-associated polypeptide are discussed.  相似文献   

14.
The chaperonin GroEL assists protein folding in the presence of ATP and magnesium through substrate protein capsulation in combination with the cofactor GroES. Recent studies have revealed the details of folding cycles of GroEL from Escherichia coli, yet little is known about the GroEL-assisted protein folding mechanisms in other bacterial species. Using three model enzyme assays, we have found that GroEL1 from Chlamydophila pneumoniae, an obligate human pathogen, has a broader selectivity for nucleotides in the refolding reaction. To elucidate structural factors involved in such nucleotide selectivity, GroEL chimeras were constructed by exchanging apical, intermediate, and equatorial domains between E. coli GroEL and C. pneumoniae GroEL1. In vitro folding assays using chimeras revealed that the intermediate domain is the major contributor to the nucleotide selectivity of C. pneumoniae GroEL1. Additional site-directed mutation experiments led to the identification of Gln(400) and Ile(404) in the intermediate domain of C. pneumoniae GroEL1 as residues that play a key role in defining the nucleotide selectivity of the protein refolding reaction.  相似文献   

15.
One of the fundamental problems in biochemistry is the role of accessory proteins in the process of protein folding. The Escherichia coli heat shock protein complex GroEL/ES has been suggested to be a 'chaperonin' and be involved in both oligomer assembly as well as protein transport through the membrane. We show here that the folding of the purified precursor of beta-lactamase is inhibited by purified GroEL or the GroEL/ES complex with a stoichiometry of one particle per molecule of pre-beta-lactamase. Purified GroES alone has no effect on folding. After Mg2+ ATP addition folding resumes and the yield of active enzyme is higher than in the absence of GroEL or GroEL/ES. Unexpectedly, GroEL or GroEL/ES, when added to folded pre-beta-lactamase, lead to an apparent net 'unfolding', probably to a collapsed state of the protein, which can be reversed by the addition of Mg2+ ATP. The reversible and Mg2+ ATP-dependent association of GroEL/ES with non-native proteins might explain its postulated role in both protein transport and oligomer assembly.  相似文献   

16.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

17.
Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes   总被引:1,自引:0,他引:1  
The double-ring chaperonin GroEL and its lid-like cochaperonin GroES form asymmetric complexes that, in the ATP-bound state, mediate productive folding in a hydrophilic, GroES-encapsulated chamber, the so-called cis cavity. Upon ATP hydrolysis within the cis ring, the asymmetric complex becomes able to accept non-native polypeptides and ATP in the open, trans ring. Here we have examined the structural basis for this allosteric switch in activity by cryo-EM and single-particle image processing. ATP hydrolysis does not change the conformation of the cis ring, but its effects are transmitted through an inter-ring contact and cause domain rotations in the mobile trans ring. These rigid-body movements in the trans ring lead to disruption of its intra-ring contacts, expansion of the entire ring and opening of both the nucleotide pocket and the substrate-binding domains, admitting ATP and new substrate protein.  相似文献   

18.
Chaperonins use ATPase cycling to promote conformational changes leading to protein folding. The prokaryotic chaperonin GroEL requires a cofactor, GroES, which serves as a "lid" enclosing substrates in the central cavity and confers an asymmetry on GroEL required for cooperative transitions driving the reaction. The eukaryotic chaperonin TRiC/CCT does not have such a cofactor but appears to have a "built-in" lid. Whether this seemingly symmetric chaperonin also operates through an asymmetric cycle is unclear. We show that unlike GroEL, TRiC does not close its lid upon nucleotide binding, but instead responds to the trigonal-bipyramidal transition state of ATP hydrolysis. Further, nucleotide analogs inducing this transition state confer an asymmetric conformation on TRiC. Similar to GroEL, lid closure in TRiC confines the substrates in the cavity and is essential for folding. Understanding the distinct mechanisms governing eukaryotic and bacterial chaperonin function may reveal how TRiC has evolved to fold specific eukaryotic proteins.  相似文献   

19.
The groESL locus of a protein-hypersecreting bacterium, Bacillus brevis, was cloned by PCR using primers designed based on the DNA sequence of a B. subtilis homolog. GroEL protein was purified to apparent homogeneity and its ATPase activity was characterized: it hydrolyzed ATP, CTP, and TTP in this order of reaction rate, and its specific activity for ATP was 0.1 micromole/min/mg protein. Purified GroEL forms a tetradecamer. GroEL was estimated to contain 22% alpha-helix, 24% beta-sheet, and 19% turn structures, by CD measurement. GroES protein was also highly purified to examine its chaperonin activity. GroEL protected from thermal inactivation of and showed refolding-promoting activity for malate dehydrogenase, strictly depending on the presence of ATP and GroES.  相似文献   

20.
GroEL-mediated protein folding.   总被引:18,自引:6,他引:12       下载免费PDF全文
I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号