首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, eighteen new isoxazolo[4,5-d]pyridazin-4(5H)-one derivatives possessing either a 1,3,4-thiadiazole or a 1,2,4-triazole-5-thione moiety were synthesized and tested for anti-inflammatory activity in vitro (COX-1/COX-2, 5-LOX) and in vivo (rat paw edema assay). Compounds 15, 16, 25, 26 and 28-30 showed dual COX-2 (IC(50)'s in the 2.1-10.9 μM range), and 5-LOX (IC(50)'s in the 6.3-63.5 μM range) inhibitory activity. When administered orally to rats, dual COX-2/5-LOX inhibitors showed higher anti-inflammatory activity in vivo (30-45% reduction of the inflammatory response) than the reference drug ibuprofen (18%). Among dual COX-2/5-LOX inhibitors, the most potent compound (28) exhibited the best anti-inflammatory profile by inhibiting both COX-2 (IC(50)=2.1 μM) and 5-LOX (IC(50)=6.3 μM) enzymes. We investigated the binding interactions of compound 28 by an enzyme-ligand molecular modeling (docking) studies, which showed favorable binding interactions in both COX-2 and 5-LOX active sites. Furthermore, the dual acting COX-2/5-LOX compound 28 exhibited a superior gastrointestinal safety profile (ulcer index=0.25) compared to the reference drug ibuprofen (UI=7.0) when administered orally at the same molar dose. These observations suggest that isoxazolo[4,5-d]pyridazin-4(5H)-one analogs represent a new scaffold to design potent, effective, and safe anti-inflammatory agents possessing dual COX-2/5-LOX inhibitory activity.  相似文献   

2.
A number of novel indomethacin glycolamide esters were synthesized and tested for their cyclooxygenase (COX-1 and COX-2) inhibition properties in vitro. Many of these compounds proved to be selective COX-2 inhibitors, and subtle structural changes in the substituents on the glycolamide ester moiety altered the inhibitory properties as well as potencies significantly. Their in vitro data were rationalized through molecular modeling studies. Few of them displayed anti-inflammatory activity in vivo. Compound 32, [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetic acid 2-morpholin-4-yl-2-oxo ethyl ester, was identified as a promising compound in this class and its good anti-inflammatory activity was demonstrated in the in vivo model.  相似文献   

3.
4.
A new type of 1-aryl-5-(4-methylsulfonylphenyl)imidazoles, possessing C-2 alkylthio (SMe or SEt) substituents, were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 1-(4-bromophenyl)-5-(4-methylsulfonylphenyl)-2-methylthioimidazole (11g), was the most potent and selective COX-2 inhibitor (COX-2 IC50=0.43 microM with no inhibition of COX-1 up to 25 microM) relative to the reference drug celecoxib (COX-2 IC50=0.21 microM with no inhibition of COX-1 up to 25 microM) and also showed very good anti-inflammatory activity compared to celecoxib in carrageenan-induced rat paw edema assay.  相似文献   

5.
A new type of 4,5-diaryl-4H-1,2,4-triazole, possessing C-3 thio and alkylthio (SH, SMe or SEt) substituents, was designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 3-ethylthio-5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-4H-1,2,4-triazole (10d), exhibited a high in vitro selectivity (COX-1 IC50=20.5 nM; COX-2 IC50=1.8 nM; SI=11.39) relative to the reference drug celecoxib (COX-1 IC50=3.7 nM; COX-2 IC50=2.2 nM; SI=1.68) and also showed good anti-inflammatory activity compared to celecoxib in a carrageenan-induced rat paw edema assay.  相似文献   

6.
A series of 5-Aryl-6-(4-methylsulfonyl)-3-(metylthio)-1,2,4-triazine derivatives were synthesized and their COX-1/COX-2 inhibitory activity as well as in vivo anti-inflammatory and analgesic effects were evaluated. All of compounds showed strong inhibition of COX-2 with IC50 values in the range of 0.1–0.2 μM and in most cases had stronger anti-inflammatory and analgesic effects than indomethacin at doses 3 and 6 mg/kg. Among them, 5-(4-chlorophenyl)-6-(4-(methylsulfonyl) phenyl)-3-(methylthio)-1,2,4-triazine (9c) was the most potent and selective COX-2 compound; its selectivity index of 395 was comparable to celecoxib (SI = 405). Evaluation of anti-inflammatory and analgesic effects of 9c showed its higher potency than indomethacin and hence could be considered as a promising lead candidate for further drug development. Furthermore, the affinity data of these compounds were rationalized through enzyme docking simulation and 3D-QSAR study by k-Nearest Neighbour Molecular Field Analysis.  相似文献   

7.
New arylhydrazone derivatives and a series of 1,5-diphenyl pyrazoles were designed and synthesized from 1-(4-chlorophenyl)-4,4,4-trifuorobutane-1,3-dione 1. The newly synthesized compounds were investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw oedema model. Moreover, they were tested for their inhibitory activity against ovine COX-1 and COX-2 using an in vitro cyclooxygenase (COX) inhibition assay. Some of the new compounds (2f, 6a and 6d) showed a reasonable in vitro COX-2 inhibitory activity, with IC?? value of 0.45 μM and selectivity index of 111.1. A virtual screening was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. Docking study of the synthesized compounds 2f, 6a and 6d into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

8.
In this study, the acid chlorides of pyrazolo[3,4-d]pyrimidine compounds were prepared and reacted with a number of nucleophiles. The novel compounds were experimentally tested via enzyme assay and they showed cyclooxygenase-2 inhibition activity in the middle micro molar range (4b had a COX-1 IC50 of 26 µM and a COX-2 IC50 of 34 µM, 3b had a COX-1 IC50 of 19 µM and a COX-2 IC50 of 31 µM, 3a had a COX-2 IC50 of 42 µM). These compounds were analyzed via docking and were predicted to interact with some of the COX-2 key residues. Our best hit, 4d (COX-1 IC50 of 28 µM, COX-2 IC50 of 23 µM), appears to adopt similar binding modes to the standard COX-2 inhibitor, celecoxib, proposing room for possible selectivity. Additionally, the resultant novel compounds were tested in several in vivo assays. Four compounds 3a (COX-2 IC50 of 42 µM), 3d, 4d and 4f were notable for their anti-inflammatory activity that was comparable to that of the clinically available COX-2 inhibitor celecoxib. Interestingly, they showed greater potency than the famous non-steroidal anti-inflammatory drug, Diclofenac sodium. In summary, these novel pyrazolo[3,4-d]pyrimidine analogues showed interesting anti-inflammatory activity and could act as a starting point for future drugs.  相似文献   

9.
Thirty-eight chalcone derivatives bearing a chromen or benzo[f]chromen moiety were synthesized and evaluated for their anti-inflammatory and analgesic activities. Using an ear edema model, anti-inflammatory activities were observed for compounds 3a-3s (ear inflammation: 1.75–3.71 mg) and 4a-4s (ear inflammation: 1.71–4.94 mg). All compounds also displayed analgesic effects with inhibition values of 66.7–100% (3a-3s) and 96.2–100% (4a-4s). The 12 compounds that displayed excellent anti-inflammatory and analgesic effects were tested for their inhibitory activity against ovine COX-1 and COX-2. Six compounds bearing a chromen moiety were weak inhibitors of the COX-1 isozyme but showed moderate COX-2 isozyme inhibitory effects (IC50s from 0.37 μM to 0.83 μM) and COX-2 selectivity indexes (SI: 22.49–9.34). Those bearing a benzo[f]chromen moiety were more selective toward COX-2 than those bearing a chromen moiety with IC50s from 0.25 μM to 0.43 μM and COX-2 selectivity indexes from SI: 31.08 to 20.67.  相似文献   

10.
Fourteen new 3-[4-(amino/methylsulfonyl)phenyl]methylene-indolin-2-one derivatives were synthesized. Six compounds displayed potent inhibitory activities against COX-1/2 and 5-LOX with IC(50) in the range of 0.10-9.87 μM. Particularly, 10f exhibited well balanced inhibitory action on these enzymes (IC(50)=0.10-0.56 μM). More importantly, 10f and several other compounds had comparable or stronger anti-inflammatory and analgesic activities, but better gastric tolerability in vivo, as compared with darbufelone mesilate and tenidap sodium. Therefore, our findings may aid in the design of new and safe anti-inflammatory reagents for the intervention of painful inflammatory diseases, such as rheumatoid arthritis at clinic.  相似文献   

11.
The synthesis of novel series of structurally related 1H-pyrazolyl derivatives is described. All the newly synthesized compounds were tested for their in vivo anti-inflammatory activity by two different bioassays namely; cotton pellet-induced granuloma and sponge implantation model of inflammation in rats. In addition, COX-1 and COX-2 inhibitory activities, ulcerogenic effects and acute toxicity were determined. The same compounds were evaluated for their in vitro antimicrobial activity against Escherichia coli, as an example of Gram negative bacteria, Staphylococcus aureus as an example of Gram positive bacteria, and Candida albicans as a representative of fungi. The combined anti-inflammatory data from local and systemic in vivo animal models showed that compounds 4, 5, 8, 9, 11 and 12a exhibited anti-inflammatory activity comparable to that of indomethacin with no or minimal ulcerogenic effects and high safety margin (LD(50)>500 mg/Kg). In addition, compounds 4, 7, 10, 12a and 12b displayed appreciable antibacterial activities when compared with ampicillin, especially against S. aureus. Compounds 4 and 12a are the most distinctive derivatives identified in the present study because of their remarkable in vivo and in vitro anti-inflammatory potency and their pronounced antibacterial activities comparable to ampicillin against Gram positive. On the other hand, compound 12a exhibited good selective inhibitory activity against COX-2 enzyme. Therefore, such compound would represent a fruitful matrix for the development of anti-inflammatory-antimicrobial candidates.  相似文献   

12.
1-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-4-substituted-phenylpiperazine moiety was prepared and has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The biological activity of compound 3k as anti-inflammatory agent was further investigated both in vitro and in vivo. Notably, compound 3k exhibited the best anti-inflammatory activity among the eleven designed compounds with no toxicity, as determined by the ulcerogenic activity. Computational docking studies also showed that compound 3k has interaction with COX-2 key residues in the active site. Compound 3k maybe a new anti-inflammatory lead-candidate as powerful and novel non-ulcerogenic.  相似文献   

13.
3-(4-Bromophenyl)-6-nitrobenzo[1.3.2]dithiazolium ylide 1,1-dioxide (5) was discovered as a new prototype for dual inhibitors of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). Thus, the structure-activity relationships of benzo[1.3.2]dithiazolium ylide 1,1-dioxide skeleton were carried out. The 6-NO(2) group played an essential role in the inhibitory activity. In addition, moderate-sized lipophilic substituents at the para-position of the 3-aryl moiety were required for dual COX-2/5-LOX inhibitory activity. Among the identified potent dual inhibitors, 3-(4-tbutylphenyl) derivative 30c (IC(50) values of 0.27 μM and 0.30 μM against COX-2 and 5-LOX, respectively) and 3-(4-biphenyl) derivative 30f (IC(50) values of 0.50 μM and 0.15μM against COX-2 and 5-LOX, respectively) were the most potent dual COX-2/5-LOX inhibitors. Intraperitoneal administration of 30c at 100mg/kg demonstrated potent acute anti-inflammatory activity. As a result, benzo[1.3.2]dithiazolium ylide 1,1-dioxide represented a novel scaffold for the exploitation in developing dual COX-2/5-LOX inhibitors.  相似文献   

14.
A group of 4-(4-methanesulfonylphenyl)-3-phenyl-2(5H)furanones possessing an acetyl, 3-oxobut-1-ynyl, [hydroxyl(or alkoxy)imino]alkyl, [hydroxyl(or alkoxy)imino]alkynyl, and N-alkoxy(or N-phenoxy)carbonyl-N-hydroxy-N-ethylamino substituents at the para-position of the C-3 phenyl ring of rofecoxib were synthesized. This group of compounds was designed for evaluation as dual inhibitors of cyclooxygenases (COXs) and lipoxygenases (LOXs) that exhibit in vivo anti-inflammatory and analgesic activities. In vitro COX-1/COX-2, and 5-LOX/15-LOX, isozyme inhibition structure-activity relationships identified 3-[4-(1-hydroxyimino)ethylphenyl]-4-(4-methanesulfonylphenyl)-2(5H)furanone (17a) having an optimal combination of COX-2 (COX-2 IC50 = 1.4 microM; COX-2 SI > 71), and 5-LOX and 15 LOX (5-LOX IC50 = 0.28 microM; 15-LOX IC50 = 0.32 microM), inhibitory effects. It was also discovered that 3-[4-(3-hydroxyiminobut-1-ynyl)phenyl]-4-(4-methanesulfonylphenyl)-2(5H)furanone (18a) possesses dual COX-2 (IC50 = 2.7 microM) and 5-LOX (IC50 = 0.30 microM) inhibitor actions. Further in vivo studies employing a rat carrageenan-induced paw edema model showed that the oxime compounds (17a, 18a) were more potent anti-inflammatory agents than the 5-LOX inhibitor caffeic acid, and 15-LOX inhibitor nordihydroguaiaretic acid (NDGA), but less potent than the selective COX-2 inhibitor celecoxib. The results of this investigation showed that incorporation of a para-oxime moiety on the C-3 phenyl ring of rofecoxib provides a suitable template for the design of dual inhibitors of the COX and LOX enzymes.  相似文献   

15.
Oxyprenylated naturally occurring cinnamic acids displayed efficient and promising biological activities. Aim of this study was to characterize the effects of 3-(4'-geranyl-3'-methoxy)phenyl-2-trans propenoic acid and its selected semi-synthetic analogues, on COX-2 expression and activity, and on COX-1 activity, in purified systems or in whole cell systems. The anti-inflammatory activity of title compounds (1) was tested as inhibition of COX-2 on isolated monocytes stimulated with LPS (10 μg/ml). COX-2 expression was completely suppressed when monocytes were incubated with 100 μM of 3-(4'-geranyl-3'-methoxy)phenyl-2-trans propenoic acid (1) or 3-(4'-isopentenyloxy)phenyl-2-trans propenoic acid (4). Moreover compounds (1) and (4) inhibit dose-dependently LPS-induced COX-2 expression.  相似文献   

16.
Polyunsaturated fatty acids (PUFA) n-3 inhibit inflammation, in vivo and in vitro in keratinocytes. We examined in HaCaT keratinocyte cell line whether eicosapentaenoic acid (EPA) a n-3 PUFA, gamma-linoleic acid (GLA) a n-6 PUFA, and arachidic acid a saturated fatty acid, modulate expression of cyclooxygenase-2 (COX-2), an enzyme pivotal to skin inflammation and reparation. We demonstrate that only treatment of HaCaT with GLA and EPA or a PPARgamma ligand (roziglitazone), induced COX-2 expression (protein and mRNA). Moreover stimulation of COX-2 promoter activity was increased by those PUFAs or rosiglitazone. The inhibitory effects of GW9662 and T0070907 (PPARgamma antagonists), on COX-2 expression and on stimulation of COX-2 promoter activity by EPA and GLA suggest that PPARgamma is implicated in COX-2 induction. Finally, PLA2 inhibitor methyl arachidonyl fluorophosphonate blocked the PUFA effects on COX-2 induction, promoter activity and arachidonic acid mobilization suggesting involvement of AA metabolites in PPAR activation. These findings demonstrate that n-3 and n-6 PUFA increased PPARgamma activity is necessary for the COX-2 induction in HaCaT human keratinocyte cells. Given the anti-inflammatory properties of EPA, we suggest that induction of COX-2 in keratinocytes may be important in the anti-inflammatory and protective mechanism of action of PUFAs n-3 or n-6.  相似文献   

17.
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-{4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID.  相似文献   

18.
Wilbrandia ebracteata (WE), a Brazilian medicinal plant used in folk medicine for the treatment of rheumatic diseases, displays anti-inflammatory properties and constitutes a rich source of cucurbitacins and cucurbitacin-related compounds. The current study investigated the potential anti-inflammatory properties of Dihydrocucurbitacin B (DHCB), a cucurbitacin-derived compound isolated from roots of WE, in some in vivo and in vitro experimental models. Intraperitoneal treatment of mice with DHCB reduced both carrageenan-induced paw edema (0.3, 1 and 3 mg/kg caused inhibitions of 26, 44 and 56 % at 2 h after stimulation, respectively) and pleurisy (10 mg/kg inhibited leukocyte numbers and LTB(4) levels in the pleural fluid by 51 and 75% at 6 h after cavity challenge, respectively). In vitro, DHCB (up to 10 microg/mL) failed to modify LTB(4) production by human neutrophils or PGE(2) production by COS-7 cells transfected with COX-1, but PGE(2) production by COX-2 transfected COS-7 cells was markedly inhibited (by 72%). The levels of COX-1 or COX-2 proteins in IL-1alpha-stimulated NIH3T3 cells were unaffected by DHCB. The results corroborate the potential anti-inflammatory properties ascribed to W. ebracteata Cogn. in folk medicine and suggest that they might be attributed, at least in part, to the capacity of one of this plants main constituents, DHCB, to inhibit COX-2 activity (but not its expression) during inflammation.  相似文献   

19.
A new series of pyrazolone–pyridazine conjugates 3 and 4al were synthesized and characterized by spectroscopic means and elemental analyses. All compounds were tested in vivo for their anti-inflammatory and analgesic properties against diclofenac, as reference compound. The synthesized compounds were also evaluated for their ability to inhibit the production of certain inflammatory cytokines such as TNF-α and IL-6 in serum samples. The ulcerogenic potential of the synthesized compounds was also determined. IC50 values for inhibition of COX-1 and COX-2 enzymes were investigated in vitro for the most active candidates. Molecular docking was performed on the active site of COX-2 to predict their mode of binding to the amino acids. Among the synthesized derivatives, compounds 4c and 4e showed good analgesic and anti-inflammatory activities with lower ulcer index than the reference drug.  相似文献   

20.
Phytochemical investigation of Hypericum empetrifolium Willd. (Clusiaceae), a species native to Greece and Turkey has led to the bioassay-guided identification of two acylphloroglucinol derivatives with potent in vitro anti-inflammatory activity. Using NMR spectroscopy and mass spectrometry, the acylphloroglucinol derivatives were characterized as 3-geranyl-1-(2'-methylpropanoyl)phloroglucinol (1) and 3-geranyl-1-(2'-methylbutanoyl)phloroglucinol (2). Hypotheses are proposed regarding the biosynthetic origin of these and similar acylphloroglucinols from related Hypericum species. Compounds 1 and 2 were evaluated for in vitro inhibitory activity against COX-1, COX-2 and 5-LOX catalyzed LTB(4) formation. Compound 1 displayed good activity (IC(50) values: 6.0, 29.9, and 2.2 μM, respectively) in all three assays. Compound 2 showed good activity (IC(50) value: 5.8 μM) against LTB(4) formation and moderate activity (IC(50) value: 26.2 μM) against COX-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号