首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Since the mixing characteristics of anaerobic reactors would appear to have an effect on their operational performance, lithium tracer studies were made on two different digester types; the upflow sludge blanket and the expanded bed reactors. The mixing characteristics of both types of reactor, defined by this technique, were found to be of the intermediate type with a bias towards good mixing.  相似文献   

2.
A new anaerobic digester design for the treatment of diluted (<2% solids) flush dairy manure was evaluated. The new design was developed as an economic alternative for enhancing the performance of anaerobic lagoon systems in cold weather areas. The digester employed used automobile tires as fixed-bed media to improve bacterial retention. The digester was heated by steam injection and built underground to enhance insulation. The tires were sorted in a unique pattern for improving mixing and uniform temperature distribution. The system was tested on a pilot-scale. The treatment mechanism was explored by mathematical modeling. The observed treatment efficiency of the new design was comparable to that of conventional digesters operating at higher total solids concentrations (>4%). With a hydraulic retention time (HRT) of 17 days, the measured removal rates were 30-50% and 40-60% of TVS and COD, respectively. The new digester maintained longer solids retention time (SRT) as estimated using the model, supported by the observed thick biofilm formation and resistance to hydraulic overload. The model was used to analyze different operation scenarios varying both the organic and hydraulic loads.  相似文献   

3.
The usual method of tracer analysis for calculating the flow across a biological membrance is based on the assumption that the compartments on either side are well-stirred. Thus, the validity of the rate of flow determination is questionable for cases where the distribution of tracer is not homogeneous. In this study, a mathematical model is developed for the purpose of estimating the effect of slow mixing on the calculation of the flow rate. The model is applied to the measurement of the rate of flow of aqueous humor through the living eye by use of a fluorescent dye as a tracer. A transit time of several minutes for the passage of fluorescein through the posterior chamber and an extended period of nonuniform distribution of fluorescein in the anterior chamber was observed. The effect of slow mixing on the calculated flow rate is compared to rates derived from equations based on the assumption of rapid mixing. Aqueous flow rates determined by the two methods were found to agree to within ≈20%.  相似文献   

4.
The mixing of the anaerobic digester contents significantly influences the efficiency of this operation; in particular, hydraulic dead zones are extremely detrimental to the reaction kinetics involved in anaerobic digestion. An analysis of the relative importance of thermal fluid movement in the digester to those caused by fluid inflow and outflow is presented. As an example, these principles are applied to a digester at the South Bend Wastewater Treatment Plant. Experimental measurements, which have general applicability for the measurement of digester mixing volume, confirm the theoretical conjectures. Various types of optimizations can be attempted on this mixing operation. One such optimization applied to gas lift mixers, as employed in the South Bend Treatment Plant, is illustrated.  相似文献   

5.
Modeling solid waste decomposition   总被引:5,自引:0,他引:5  
The hydrolysis rate coefficients of sorted municipal waste were evaluated from the biochemical methane potential tests using non-linear regression. A distributed mathematical model of anaerobic digestion of rich (food) and lean (non-food) solid wastes with greatly different rates of polymer hydrolysis/acidogenesis was developed to describe the balance between the rates of hydrolysis/acidogenesis and methanogenesis. The model was calibrated using previously published experimental data [Biores. Technol. 52 (1995) 245] obtained upon various initial food waste loadings. Simulations of one- and two-stage digestion systems were carried out. The results showed that initial spatial separation of food waste and inoculum enhances methane production and waste degradation in a one-stage solid-bed digester at high waste loading. A negative effect of vigorously mixing at high waste loading reported in some papers was discussed. It was hypothesized that the initiation methanogenic centers developing in time and expanding in space under minimal mixing conditions might be a key factor for efficient anaerobic conversion of solid waste into methane.  相似文献   

6.
An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete‐mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug‐flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency. Biotechnol. Bioeng. 2012; 109: 2864–2874. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Numerical simulation of mechanical mixing in high solid anaerobic digester   总被引:1,自引:0,他引:1  
Yu L  Ma J  Chen S 《Bioresource technology》2011,102(2):1012-1018
Computational fluid dynamics (CFD) was employed to study mixing performance in high solid anaerobic digester (HSAD) with A-310 impeller and helical ribbon. A mathematical model was constructed to assess flow fields. Good agreement of the model results with experimental data was obtained for the A-310 impeller. A systematic comparison for the interrelationship of power number, flow number and Reynolds number was simulated in a digester with less than 5% TS and 10% TS (total solids). The simulation results suggested a great potential for using the helical ribbon mixer in the mixing of high solids digester. The results also provided quantitative confirmation for minimum power consumption in HSAD and the effect of share rate on bio-structure.  相似文献   

8.
A general mathematical model that predicts the flow fields in a mixed-flow anaerobic digester was developed. In this model, the liquid manure was assumed to be a non-Newtonian fluid, and the flow governed by the continuity, momentum, and k-epsilon standard turbulence equations, and non-Newtonian power law model. The commercial computational fluid dynamics (CFD) software, Fluent, was applied to simulate the flow fields of lab-scale, scale-up, and pilot-scale anaerobic digesters. The simulation results were validated against the experimental data from literature. The flow patterns were qualitatively compared for Newtonian and non-Newtonian fluids flow in a lab-scale digester. Numerical simulations were performed to predict the flow fields in scale-up and pilot-scale anaerobic digesters with different water pump power inputs and different total solid concentration (TS) in the liquid manure. The optimal power inputs were determined for the pilot-scale anaerobic digester. Some measures for reducing dead and low velocity zones were proposed based upon the CFD simulation results.  相似文献   

9.
The survival of pathogenic bacteria was investigated during the operation of a full-scale anaerobic digester which was fed daily and operated at 28°C. The digester had a mean hydraulic retention time of 24 d. The viable numbers of Escherichia coli, Salmonella typhimurium, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni were reduced during mesophilic anaerobic digestion. Echerichia coli had the smallest mean viable numbers at each stage of the digestion process. Its mean T90 value was 76.9 d. Yersinia enterocolitica was the least resistant to the anaerobic digester environment; its mean T90 value was 18.2 d. Campylobacter jejuni was the most resistant bacterium; its mean T90 value was 438.6 d. Regression analysis showed that there were no direct relationships between the slurry input and performance of the digester and the decline of pathogen numbers during the 140 d experimental period.  相似文献   

10.
Two anaerobic filters, one mesophilic (35 degrees C) and one thermophilic (55 degrees C), were operated with a papermill wastewater at a series of organic loadings. The hydraulic retention time (HRT) ranged from 6 to 24 h with organic loading rates (OLR) 1.07-12.25 g/l per day. At loading rates up to 8.4 g COD/l d, there was no difference in terms of the removal of soluble COD (SCOD) and gas production. At the higher organic loading rate, the SCOD removal performance of thermophilic digester was slightly better compare to mesophilic digester. Similar trend was also observed in terms of the daily methane production. The stability of thermophilic digester was also better than mesophilic digester particularly for the higher organic loadings. Volatile fatty acid accumulation was observed in the effluent of the mesophilic filter at the higher organic loading rates. The Stover-Kincannon model was applied to both digesters and it was found that model was applicable to both digesters for papermill wastewater. K(B) and U(max) constants from the Stover-Kincannon model were also derived.  相似文献   

11.
Detention and mixing in free water wetlands   总被引:3,自引:0,他引:3  
Mixing was studied in free water surface wetland receiving pumped river water, by measurement of the non-interacting tracer lithium. The flow pattern was found to be intermediate between plug flow and well-mixed. The nominal detention time, calculated from volume aand flow, was 50% larger than the mean tracer detention time. The peak time was found to be one-half the tracer detention time. Three models were constructed: plug flow with dispersion, tanks in series, and a series-parallel network of tanks. All proved capable of fitting the exit tracer concentration curves but the network model provided a better fit to internal measurements. Pumping frequency was high enough to allow use of an average flowrate. The degree of mixing, as characterized by the variance of the exit tracer response curve, was comparable to that found by other researchers for wetlands, ponds and rivers.  相似文献   

12.
The understanding of mixing and mass transfers of nutrients and drugs in the small intestine is of prime importance in creating formulations that manipulate absorption and digestibility. We characterised mixing using a dye tracer methodology during spontaneous longitudinal contractions, i.e. pendular activity, in 10 cm segments of living proximal duodenum of the rat maintained ex-vivo. The residence time distribution (RTD) of the tracer was equivalent to that generated by a small number (8) of continuous stirred tank reactors in series. Fluid mechanical modelling, that was based on real sequences of longitudinal contractions, predicted that dispersion should occur mainly in the periphery of the lumen. Comparison with the experimental RTD showed that centriluminal dispersion was accurately simulated whilst peripheral dispersion was underestimated. The results therefore highlighted the potential importance of micro-phenomena such as microfolding of the intestinal mucosa in peripheral mixing. We conclude that macro-scale modeling of intestinal flow is useful in simulating centriluminal mixing, whereas multi-scales strategies must be developed to accurately model mixing and mass transfers at the periphery of the lumen.  相似文献   

13.
Evaluation of parameters for monitoring an anaerobic co-digestion process   总被引:7,自引:0,他引:7  
The system investigated in this study is an anaerobic digester at a municipal wastewater treatment plant operating on sludge from the wastewater treatment, co-digested with carbohydrate-rich food-processing waste. The digester is run below maximum capacity to prevent overload. Process monitoring at present is not extensive, even for the measurement of on-line gas production rate and off-line pH. Much could be gained if a better program for monitoring and control was developed, so that the full capacity of the system could be utilised without the risk of overload. The only limit presently set for correct process operation is that the pH should be above 6.8. In the present investigation, the pH was compared with alkalinity, gas production rate, gas composition and the concentration of volatile fatty acids (VFA). Changes in organic load were monitored in the full-scale anaerobic digester and in laboratory-scale models of the plant. Gas-phase parameters showed a slow response to changes in load. The VFA concentrations were superior for indicating overload of the microbial system, but alkalinity and pH also proved to be good monitoring parameters. The possibility of using pH as a process indicator is, however, strongly dependent on the buffering capacity. In this study, a minor change in the amount of carbohydrates in the substrate had drastic effects on the buffering effect of the system. Received: 21 January 2000 / Received revision: 10 July 2000 / Accepted: 16 July 2000  相似文献   

14.
Image analysis to quantify and measure UASB digester granules   总被引:2,自引:0,他引:2  
Two-dimensional image analysis was applied to counting, sizing, and density determinations of granules in full-scale and laboratory-scale upflow anaerobic sludge blanket (UASB) digesters. An advantage of this technique for monitoring laboratory-scale digester sludge is the small amount of material required for analysis. Quantification of number of granules using this method correlated well with dry weight determinations (r = 0.989). Distinguished granule size increased with time throughout the digestion process, supported by dry weight determinations which indicated an increase in biomass. The monitoring of granule density may reveal subtleties of the selection pressure placed on granules not noticed previously. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
The principle of dimensional analysis of liquid flow has been applied to the problem of rapid mixing in flow apparatus. A model of the Hartridge-Roughton mixing chamber and observation tube has been scaled approximately 1/1.000 so that the times after mixing are approximately 6 s, the flow velocities are the order of 2 cm/s, and the distance from mixing to observation is 120 mm. Visual observation is employed to observe the end point of the mixing of acid-base with a color indicator, thymol blue. Quantitative estimates of the effect of the number of jets, the effect of screens placed in the flow stream, and the angle of jets, one with respect to another, lead to quantitative evaluations of these parameters for the scale model. The extent to which these parameters apply to the full-scale apparatus at faster flow velocities suggest that the general principles employed in the scale model are valid, although more emphasis is placed upon turbulence generation at the low flow velocities employed in this experiment than at the faster flow velocities employed in the full-scale apparatus.  相似文献   

16.
A mixed culture anaerobic digestion model developed previously was applied to the evaluation of several digester control strategies. It was found that pH control by base addition or flow rate manipulation is inadequate. Based on an analysis of digester dynamics, a new control of the total suspended solids concentration at the feed was proposed through the manipulation of the underflow flow rate of the preceeding sedimentation unit. This control was tested in a variety of simulated runs and proved very effective in eliminating most of the usual causes of digester failure.  相似文献   

17.
18.
This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD: sulphate ratio of 3–4 : 1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation.Laboratory-scale hybrid reactor treatment at 55 °C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6 : 1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.  相似文献   

19.
《Process Biochemistry》2014,49(6):913-916
Mixing time is one of the most important characteristics of bioreactors used to validate computational fluid dynamics (CFD) models in bioprocess. The pH tracer based method is commonly used to estimate mixing time by monitoring the pH change after perturbation to the system. However, pH probe lag is known to introduce errors in the test results. To determine the impact of probe lag on the measurement, pH probe response times were investigated. A second order mathematical model was established to describe the probe response profile and calculate the probe transfer function which was used to correct the empirical results. The corrected mixing time was used to validate the CFD models and also showed that the impact of pH probe response time on mixing time measurement is significant even in larger (pilot and manufacturing) scales. In addition, comparison with a conductance based tracer method is also discussed in this paper.  相似文献   

20.
Das P  Obbard JP 《Bioresource technology》2011,102(3):2973-2978
A model was developed for any PBR, based on mixing requirement per unit of biomass production rather than constant amount of mixing energy. The model assumes constant biomass concentration throughout the culture time which means the volume of the culture would increase over time; the mixing energy will also increase over time according to the volume of the culture. Such incremental energy supply (IES) consumes much less energy compared to constant energy supply (CES); higher the culture time in the PBR, more is the savings in the IES compared to CES. In addition to mixing energy, light energy can also be applied using IES scheme. The model was validated with the algae Nannochloropsis sp.; 44% of the energy input of CES was saved by adopting IES with equal biomass productivities for a culture period of 60 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号