首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 9 piperazine derivatives of xanthone were synthesized and evaluated for cardiovascular activity. The following pharmacological experiments were conducted: the binding affinity for adrenoceptors, the influence on the normal electrocardiogram, the effect on the arterial blood pressure and prophylactic antiarrhythmic activity in adrenaline induced model of arrhythmia (rats, iv). Three compounds revealed nanomolar affinity for α1-adrenoceptor which was correlated with the strongest cardiovascular (antiarrhythmic and hypotensive) activity in animals’ models. The most promising compound was 4-(3-(4-(2-methoxyphenyl)piperazine-1-yl)propoxy)-9H-xanthen-9-one hydrochloride (12) which revealed antiarrhythmic activity with ED50 value of 0.69 mg/kg in adrenaline induced arrhythmia (rats, iv). Other synthesized xanthone derivatives, that is, (R,S)-4-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazine-1-yl)propoxy)-9H-xanthen-9-one hydrochloride (10) and (R,S)-4-(2-acetoxy-3-(4-(2-methoxyphenyl)piperazine-1-yl)propoxy)-9H-xanthen-9-one hydrochloride (11) also acted as potential antiarrhythmics in adrenaline induced model of arrhythmia in rats after intravenous injection (ED50 = 0.88 mg/kg and 0.89 mg/kg, respectively). These values were lower than values obtained for reference drugs such as propranolol and urapidil, but not carvedilol.Results were quite promising and suggested that in the group of xanthone derivatives new potential antiarrhythmics and hypotensives might be found.  相似文献   

2.
3,4-Diphenyl-substituted 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione derivatives were synthesized and evaluated for the inhibitory activities on LPS-induced PGE2 production in RAW 264.7 macrophage cells. Both 1H-furan-2,5-dione and 1H-pyrrole-2,5-dione rings as main scaffolds were easily obtained using one of three synthetic methods. Among the compounds investigated, 1H-3-(4-sulfamoylphenyl)-4-phenyl-pyrrole-2,5-dione (6l) showed a strong inhibitory activity (IC50 = 0.61 μM) of PGE2 production.  相似文献   

3.
In an attempt to design novel 5-HT1A agonists/partial agonists, based on an arylpiperazine nucleus, a series of N-{4-[4-(aryl)piperazine-1-yl]-phenyl}-amine derivatives were synthesized and biologically tested. The anxiolytic effect of the compounds was investigated employing the Elevated plus Maze (EPM) task. On the basis of in vivo functional test, compound 1c (3 mg/kg) and 4c (3 mg/kg) induced significant increments in open arm entries and time on EPM as compared to Buspirone. The anxiolytic effects of compounds 1c and 4c were effectively antagonized by WAY-100635, a 5-HT1A receptor antagonist (0.5 mg/kg). Furthermore, we have also evaluated the concentration of 5-HT in the brain tissue using HPLC with fluorescent detection. Our result showed that serotonin levels were significantly decreased by ~38% (p < 0.001) and ~32% (p < 0.001) after acute administration of compounds 1c and 4c, respectively. These findings suggest that the anxiolytic like activity of these new arylpiperazines is mediated via 5-HT1A receptors in the brain.  相似文献   

4.
A new series of 16E-arylidene androstene derivatives has been synthesized and evaluated for aromatase inhibitory activity. The impact of various aryl substituents at 16 position of the steroid skeleton on aromatase inhibitory activity has been observed. The 16E-arylidenosteroids 6, 10 and 11 exhibited significant inhibition of the aromatase enzyme. 16-(4-Pyridylmethylene)-4-androstene-3,17-dione (6, IC50: 5.2 μM) and 16-(benzo-[1,3]dioxol-5-ylmethylene)androsta-1,4-diene-3,17-dione (11, IC50: 6.4 μM) were found to be approximately five times more potent in comparison to aminoglutethimide.  相似文献   

5.
Recently numerous non-fluoroquinolone-based bacterial type II topoisomerase inhibitors from both the GyrA and GyrB classes have been reported as antibacterial agents. Inhibitors of the GyrA class include aminopiperidine-based novel bacterial type II topoisomerase inhibitors (NBTIs). However, inhibition of the cardiac ion channel remains a serious liability for the aminopiperidine based NBTIs. In this paper we replaced central aminopiperidine linker with piperazine moiety and tested for its biological activity. We developed a series of twenty four compounds with a piperazine linker 1-(2-(piperazin-1-yl)ethyl)-1,5-naphthyridin-2(1H)-one, by following a multistep protocol. Among them compound 4-(2-(7-methoxy-2-oxo-1,5-naphthyridin-1(2H)-yl)ethyl)-N-(4-nitrophenyl)piperazine-1-carboxamide (11) was the most promising inhibitor with Mycobacterium tuberculosis (MTB) DNA gyrase enzyme supercoiling IC50 of 0.29 ± 0.22 μM, with a good MTB MIC of 3.45 μM. These kind of compounds retains good potency and showed reduced cardiotoxicity compared to aminopiperidines.  相似文献   

6.
Synthesis and biological activities of a series of homo- or substituted piperidine unsymmetrical diethers are described. The novel compounds were evaluated for histamine H3 receptor binding affinities at recombinant human H3 receptor stably expressed in HEK-293 cells. All diethers showed in vitro affinities in nanomolar concentration range. The most potent compounds are 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]-3-methylpiperidine 11 (Ki = 3.2 nM) and 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]azepane 13 (Ki = 3.5 nM).  相似文献   

7.
A series of some novel 2,4-thiazolidinediones (TZDs) (2ax) have been synthesized and characterized by FTIR, 1H NMR, 13C NMR and LC mass spectral analysis. All the synthesized compounds were evaluated for their cytotoxicity, antimicrobial and in vivo antihyperglycemic activities. Among the tested compounds for cytotoxicity using Brine Shrimp Lethality assay, compound 2t ((Z)-5-(4-((E)-3-oxo-3-(thiophen-2-yl)prop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited significant inhibitory activity at ED50 value 4.00 ± 0.25 μg/mL and this level of activity was comparable to that of the reference drug podophyllotoxin with ED50 value 3.61 ± 0.17 μg/mL. Antimicrobial activity was screened using agar well diffusion assay method against selected Gram-positive, Gram-negative and fungal strains and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. From the results of antimicrobial activity compound 2s ((Z)-5-(4-((E)-3-(3,5-bis(benzyloxy)phenyl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) was found to be the most active against all the tested strains of microorganisms with MIC value 16 μg/mL. In vivo antihyperglycemic effect of twenty four TZDs (2ax) at different doses 10, 30 and 50 mg/kg b.w (oral) were assessed using percentage reduction of plasma glucose (PG) levels in streptozotocin-induced type II diabetic rat models. From the results, the novel compound 2x ((Z)-5-(4-((E)-3-(9H-fluoren-2-yl)-3-oxoprop-1-enyl)benzylidene)-1,3-thiazolidine-2,4-dione) exhibited considerably potent blood glucose lowering activity than that of the standard drug rosiglitazone and it could be a remarkable starting point to evaluate structure–activity relationships and to develop new lead molecules with potential cytotoxicity, antimicrobial and antihyperglycemic activities. In addition molecular docking studies were carried out against PPARγ molecular target using Molegro Virtual Docker v 4.0 to accomplish preliminary confirmation of the observed in vivo antihyperglycemic activity.  相似文献   

8.
A series of (R)-3-amino-1-((3aS,7aS)-octahydro-1H-indol-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one derivatives was designed, synthesized, and evaluated as novel inhibitors of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes. Most of the synthesized compounds demonstrated good inhibition activities against DPP-4. Among these, compounds 3e, 4c, 4l, and 4n exhibited prominent inhibition activities against DPP-4, with IC50s of 0.07, 0.07, 0.14, and 0.17 μM, respectively. The possible binding modes of compounds 3e and 4n with dipeptidyl peptidase-4 were also explored by molecular docking simulation. These potent DPP-4 inhibitors were optimized for the absorption, distribution, metabolism, and excretion (ADME) properties, and compound 4n displayed an attractive pharmacokinetic profile (F = 96.3%, t1/2 = 10.5 h).  相似文献   

9.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

10.
A series of fourteen dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions and were screened for their antimycobacterial activity against Mycobacterium tuberculosis H37Rv in HTS (High Throughput Screen). Most of the compounds showed moderate to good activity with MIC of less than 20 μM. Compound 4′-(4-bromophenyl)-1′-methyldispiro[acenaphthylene-1,2′-pyrrolidine-3′,2″-indane]-2,1″(1H)-dione (4c) was found to be the most active with MIC of 12.50 μM.  相似文献   

11.
Early studies led to the identification of 3β-(4-methoxyphenyl)tropane-2β-carboxylic acid methyl ester (5) with high affinity at the DAT (IC50 = 6.5 nM) and 5-HTT (Ki = 4.3 nM), while having much less affinity at the NET (Ki = 1110 nM). In the present study, we replaced the 4′-methoxy group of the 3β-phenyl ring with a bioisosteric 4′-methylthio group to give 7a. We also synthesized a number of 3β-(4-alkylthiophenyl)tropanes 7be, 3β-(4-methylsulfinylphenyl) and 3β-(4-methylsulfonylphenyl)tropane analogues 7fh as well as the 3β-(4-alkylthiophenyl)nortropane derivatives 811 to further characterize the structure–activity relationship of this type of compound for binding at monoamine transporters. With exception of the 4′-methylsulfonyl analogue 7h, all the tested compounds possessed high binding affinities at the 5-HTT. The Ki values ranged from 0.19 nM to 49 nM. The 3β-(4-methylthiophenyl)tropane 7a and its N-(3-fluoropropyl) analogue 9a and N-allyl analogue 10a are the most selective compounds for the 5-HTT over the NET (NET/5-HTT = 314–364) in the series. However, none of the compounds showed selectivity similar to 5 for both the DAT and 5-HTT relative to the NET. This study provided useful SAR information for rational design of potent and selective monoamine transporter inhibitors.  相似文献   

12.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

13.
Thirty-six naturally occurring compounds, including four C10-acetylenic glycosides and a lignan, were isolated from the whole plants of Saussurea cordifolia. Their structures were elucidated by means of spectroscopic and chemical methods to be 4,6-decadiyne-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (1), 4,6-decadiyne-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (2), (8E)-decaene-4, 6-diyn-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (3), (8Z)-decaene-4,6-diyn-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (4), and (2R, 3S, 4S)-4-(4-hydroxy-3-methoxybenzyl)-2-(5-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-tetrahydrofuran-3-ol (5).  相似文献   

14.
1-((Substituted)methyl)quinoxaline-2,3(1H,4H)-dione (2ae) and 1-((substituted)acryloyl)quinoxaline-2,3(1H,4H)-dione (4ac) were synthesized from quinoxaline-2,3(1H,4H)-dione 1 and evaluated for their antimicrobial activities. Results of the antitubercular screening against Mycobacterium tuberculosis H37Rv showed that the compounds 2b, 3, and 4a were the most effective, with minimum inhibitory concentrations of 8.012, 8.561, and 8.928 μg/ml, respectively. All the compounds exhibited significant antibacterial and considerable antifungal activities.  相似文献   

15.
Multitarget approaches, i.e., addressing two or more targets simultaneously with a therapeutic agent, are hypothesized to offer additive therapeutic benefit for the treatment of neurodegenerative diseases. Validated targets for the treatment of Parkinson’s disease are, among others, the A2A adenosine receptor (AR) and the enzyme monoamine oxidase B (MAO-B). Additional blockade of brain A1 ARs may also be beneficial. We recently described 8-benzyl-substituted tetrahydropyrazino[2,1-f]purinediones as a new lead structure for the development of such multi-target drugs. We have now designed a new series of tetrahydropyrazino[2,1-f]purinediones to extensively explore their structure–activity-relationships. Several compounds blocked human and rat A1 and A2AARs at similar concentrations representing dual A1/A2A antagonists with high selectivity versus the other AR subtypes. Among the best dual A1/A2AAR antagonists were 8-(3-(4-chlorophenyl)propyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (41, Ki human A1: 65.5 nM, A2A: 230 nM; Ki rat A1: 352 nM, A2A: 316 nM) and 1,3-dimethyl-8-((2-(thiophen-2-yl)thiazol-4-yl)methyl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (57, Ki human A1: 642 nM, A2A: 203 nM; Ki rat A1: 166 nM, A2A: 121 nM). Compound 57 was found to be well water-soluble (0.7 mg/mL) at a physiological pH value of 7.4. One of the new compounds showed triple-target inhibition: (R)-1,3-dimethyl-8-(2,1,3,4-tetrahydronaphthalen-1-yl)-6,7,8,9-tetrahydropyrazino[2,1-f]purine-2,4(1H,3H)-dione (49) was about equipotent at A1 and A2AARs and at MAO-B (Ki human A1: 393 nM, human A2A: 595 nM, IC50 human MAO-B: 210 nM) thus allowing future in vivo explorations of the intended multi-target approach.  相似文献   

16.
A series of symmetric and asymmetric spermine (SPM) conjugates with all-trans-retinoic acid (ATRA), acitretin (ACI), (E)-3-(trioxsalen-4′-yl)acrylic acid (TRAA) and l-DOPA, amides of ACI, l-DOPA and TRAA with 1-aminobutane, benzylamine, dopamine and 1,12-diaminobutane as well as hybrid conjugates of O,O′-dimethylcaffeic acid (DMCA) with TRAA or N-fumaroyl-indole-3-carboxanilide (FICA) and 2-(2-aminoethoxy)ethanol were synthesized and their antioxidant properties were studied. The reducing activity (RA)% of the compounds were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay and found to be in the range 0–92(20 min)%/96(60 min)% at 100 μM, the most powerful being the conjugates l-DOPA-SPM-l-DOPA (8, RA = 89%/96%) and l-DOPA-dopamine (13, RA = 92%/92%). Conjugate DMCA-NH(CH2CH2O)2-FICA (14) was the most powerful LOX inhibitor with IC50 33.5 μM, followed by the conjugates ACI-NHCH2Ph (10, IC50 40.5 μM), ACI-SPM-TRAA (7, IC50 41.5 μM), DMCA-NH(CH2CH2O)2-TRAA (15, IC50 65 μM), 13 (IC50 81.5 μM) and ACI-dopamine (11, IC50 87 μM). The most potent inhibitors of lipid peroxidation at 100 μM were the conjugates 15 (98%) and ACI-SPM-ACI (4, 97%) whereas all other compounds showed activities comparable or lower than trolox. The most interesting compounds, namely ATRA-SPM-ATRA (3), 4, 10, 11 and 15, as well as unconjugated compounds such as ATRA and dopamine, were studied for their anti-inflammatory activity in vivo on rat paw oedema induced by Carrageenan and found to exhibit, for doses of 0.01 mmol/mL of conjugates per Kg of rat body weight, weaker anti-inflammatory activities (3.6–40%) than indomethacin (47%) with conjugate 3 being the most potent (40%) in this series of compounds. The cytocompatibility of selected compounds was evaluated by the viability of RAMEC cells in the presence of different concentrations (0.5–50 μM) of the compounds. Conjugates 3 (IC50 2.6 μM) and 4 (IC50 4.7 μM) were more cytotoxic than the corresponding unconjugated retinoids ATRA (IC50 18.3 μM) and ACI (IC50 14.6 μM), whereas conjugate 15 (IC50 12.9 μM) was less cytotoxic than either DCSP (IC50 11.3 μM) or the tert-butyl ester of TRAA (IC50 2.9 μM).  相似文献   

17.
A three-step synthetic pathway has been employed to synthesize a small library of 2-(4-arylpiperidin-1-yl)-1-(1H-indol-3-yl)ethanone and 2-(4-arylpiperidin-1-yl)-1-(1H-indol-3-yl)ethane-1,2-dione derivatives that have been screened in [3H]ifenprodil competition binding assay. Some compounds exhibited significant binding affinity at nanomolar concentration, the most active being ligand 35 (IC50 = 5.5 nM). Docking experiments suggested the main interactions between 35 and GluN2B-containing NMDA receptors. Notably, the compound 35 reduced NMDA-mediated excitatory post-synaptic currents recorded in mouse hippocampal slices indicating antagonistic effects (50 nM). Moreover, the compound 35 has shown antioxidant effects in a preliminary screening, thus suggesting that it might be considered prototype for future drug development of novel ‘dual target’ neuroprotective agents.  相似文献   

18.
Eleven prenylated C6–C3 compounds, illihenryifunones A, B (1, 2), illihenryifunol A (3), illihenryipyranol A (4), illihenryiones A−G (511), and three known prenylated C6–C3 compounds (1214), were isolated from the roots of Illicium henryi. Structures of 111 were elucidated by spectroscopic methods including NMR, HRESIMS, and CD. The absolute configuration of the 11,12-diol moiety in 5 was determined by observing its induced circular dichroism after addition of Mo2(OAc)4 in DMSO. The absolute configuration of C-11 in 4 was determined as S based on the Rh2(OCOCF3)4-induced CD data; the absolute configuration of 3 was determined as R by comparison of its experimental and calculated electronic circular dichroism (ECD). The antioxidant activities of compounds 114 were also evaluated. Compound 4 exhibited strong antioxidant activity with an IC50 value of 2.97 ± 1.30 μM, whereas compounds 3 and 8 showed antioxidant activities with IC50 values of 44.36 ± 0.30 and 48.00 ± 2.01 μM, respectively.  相似文献   

19.
We describe the discovery of phenoxymethylbenzamide derivatives as a novel class of glycine transporter type-2 (GlyT-2) inhibitors. We found hit compound 1 (human GlyT-2, IC50 = 4040 nM) in our library and converted its 1-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)pyrrolidin-3-yl group to an 1-(N,N-dimethylaminopropyl)piperidyl group and its tert-butyl group to a trifluoromethyl group to obtain N-(1-(3-(dimethylamino)propyl)piperidin-4-yl)-4-((4-(trifluoromethyl)phenoxy)methyl)benzamide (20). Compound 20 showed good inhibitory activity against human GlyT-2 (IC50 = 15.3 nM) and exhibited anti-allodynia effects in a mouse neuropathic pain model.  相似文献   

20.
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[11C]methylphenyl)thiazol-2-yl]-1-carboxamide ([11C]DFMC, [11C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1 nM) for FAAH. [11C]1 was synthesized by C11C coupling reaction of arylboronic ester 2 with [11C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [11C]1 was obtained with a radiochemical yield of 20 ± 10% (based on [11C]CO2, decay-corrected, n = 5) and specific activity of 48–166 GBq/μmol. After the injection of [11C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [11C]1 revealed high uptakes in the cerebellar nucleus (SUV = 2.4) and frontal cortex (SUV = 2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30 min after the radioligand injection. The present results indicate that [11C]1 is a promising PET ligand for imaging of FAAH in living brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号