首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, inhibition of HDAC6 became a promising therapeutic strategy for the treatment of cancer and HDAC6 inhibitors were considered to be potent anti-cancer agents. In this work, celecoxib showed moderate degree of HDAC6 inhibition activity and selectivity in preliminary enzyme inhibition activity assay. A series of hydroxamic acid derivatives bearing phenylpyrazol moiety were designed and synthesized as HDAC6 inhibitors. Most compounds showed potent HDAC6 inhibition activity. 11i was the most selective compound against HDAC6 with IC50 values of 0.020 µM and selective factor of 101.1. Structure-activity relationship analysis indicated that locating the linker group at 1′ of pyrazol gave the most selectivity. The most compounds 11i (GI50 = 3.63 μM) exhibited 6-fold more potent than vorinostat in HepG2 cells. Considering of the high selectivity against HDAC6 and anti-proliferation activity, such compounds have potential to be developed as anti-cancer agents.  相似文献   

2.
We have identified a series of diphenylmethylene hydroxamic acids as novel and selective HDAC class IIa inhibitors. The original hit, N-hydroxy-2,2-diphenylacetamide (6), has sub-micromolar class IIa HDAC inhibitory activity, while the rigidified oxygen analogue, N-hydroxy-9H-xanthene-9-carboxamide (13), is slightly more selective for HDAC7 with an IC50 of 0.05 μM. Substitution of 6 allows for the modulation of selectivity and potency amongst the class IIa HDAC isotypes.  相似文献   

3.
Based on our recently reported selective hMAO-A inhibitors, on which, the intramolecular cyclization led to a very interesting change of isoform selectivity. A series of selective hMAO-B inhibitors (3a3u) with novel scaffold of tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one were designed and synthesized. Compound 3u (IC50 = 221 nM) exhibited the best inhibitory activity and isoform selectivity against hMAO-B, superior to selegiline (IC50 = 321 nM), which is a commercial selective hMAO-B inhibitor used to Parkinson’s disease. Modeling study indicated that the selectivity of our compounds to hMAO-B is determined by at least two residues, i.e., Ile 199 and Cys 172 (or corresponded Phe 208 and Asn 181 of hMAO-A). These data support further studies to assess rational design of more efficiently selective hMAO-B inhibitors.  相似文献   

4.
A series of hydroxamates (4a–4l) were prepared from p-aminobenzoic acid to inhibit HDAC8. The idea is to substitute rigid aromatic ring in place of less rigid piperazine ring of hydroxamates reported earlier by our group. It is expected to increase potency retaining the selectivity. Result obtained suggested that the modifications carried out retained the selectivity towards HDAC8 isoform and increasing the potency in very few cases. Increase in potency is also associated with variation in cap aryl region. Two compounds (4f & 4l) were found to inhibit HDAC8 at concentrations (IC50) less than 20 μM.  相似文献   

5.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

6.
A series of N-(2-morpholinoethyl)nicotinamide (113) and N-(3-morpholinopropyl)nicotinamide derivatives (1426) have been designed, synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. Most of these synthesized compounds proved to be potent, and selective inhibitors of MAO-A rather than of MAO-B. 5-Chloro-6-hydroxy-N-(2-morpholinoethyl)nicotinamide (13) displayed the highest MAO-A inhibitory potency (IC50 = 0.045 μM) and a good selectivity. 2-Bromo-N-(2-morpholinoethyl)nicotinamide (3) was the most potent MAO-B inhibitor with the IC50 value of 0.32 μM, but it was not selective. Molecular dockings of compound 13 were performed in order to give structural insights regarding the MAO-A selectivity.  相似文献   

7.
With the aim to find out the structural features for the MAO inhibitory activity and selectivity, in the present communication we report the synthesis and pharmacological evaluation of a new series of bromo-6-methyl-3-phenylcoumarin derivatives (with bromo atom in both different benzene rings of the skeleton) with and without different number of methoxy substituent at the 3-phenyl ring. The methoxy substituents were introduced, in this new scaffold, in the meta and/or para positions of the 3-phenyl ring. The synthesized compounds 37 were evaluated as MAO-A and B inhibitors using R-(?)-deprenyl (selegiline) and iproniazide as reference inhibitors, showing, most of them, MAO-B inhibitory activities in the low nanomolar range. Compounds 4 (IC50 = 11.05 nM), 5 (IC50 = 3.23 nM) and 6 (IC50 = 7.12 nM) show higher activity than selegiline (IC50 = 19.60 nM) and higher MAO-B selectivity, with more than 9050-fold, 30,960-fold and 14,045-fold inhibition levels, with respect to the MAO-A isoform.  相似文献   

8.
On the basis of potent and selective binding affinity of truncated 4′-thioadenosine derivatives at the human A3 adenosine receptor (AR), their bioisosteric 4′-oxo derivatives were designed and synthesized from commercially available 2,3-O-isopropylidene-d-erythrono lactone. The derivatives tested in AR binding assays were substituted at the C2 and N6 positions. All synthesized nucleosides exhibited potent and selective binding affinity at the human A3 AR. They were less potent than the corresponding 4′-thio analogues, but showed still selective to other subtypes. The 2-Cl series generally were better than the 2-H series in view of binding affinity and selectivity. Among compounds tested, compound 5d (X = Cl, R = 3-bromobenzyl) showed the highest binding affinity (Ki = 13.0 ± 6.9 nM) at the hA3 AR with high selectivity (at least 88-fold) in comparison to other AR subtypes. Like the corresponding truncated 4′-thio series, compound 5d antagonized the action of an agonist to inhibit forskolin-stimulated adenylate cyclase in hA3 AR-expressing CHO cells. Although the 4′-oxo series were less potent than the 4′-thio series, this class of human A3 AR antagonists is also regarded as another good template for the design of A3 AR antagonists and for further drug development.  相似文献   

9.
To obtain selective and potent inhibitor for T-type calcium channel by ligand based drug design, 2-hydroxy-3-phenoxypropyl piperazine derivatives were synthesized and evaluated for in vitro activities. Compound 6m and 6q showed high selectivity over hERG channel (IC50 ratio of hERG/α1G 6m = 8.5, 6q = 18.38) and they were subjected to measure pharmacokinetics profiles. Among them compound 6m showed an excellent pharmacokinetic profile in rats.  相似文献   

10.
In the present study, a series of fifteen α-tetralone (3,4-dihydro-2H-naphthalen-1-one) derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The α-tetralone derivatives examined are structurally related to a series of chromone (1-benzopyran-4-one) derivatives which has previously been shown to act as MAO-B inhibitors. The results document that the α-tetralones are highly potent MAO-B inhibitors with all compounds exhibiting IC50 values in the nanomolar range (<78 nM). Although most compounds are selective inhibitors of MAO-B, the α-tetralones are also potent MAO-A inhibitors with ten compounds exhibiting IC50 values in the nanomolar range (<792 nM). The most potent MAO-B inhibitor, 6-(3-iodobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 4.5 nM with a 287-fold selectivity for MAO-B over the MAO-A isoform, while the most potent MAO-A inhibitor, 6-(3-cyanobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 24 nM with a 3.25-fold selectivity for MAO-A. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C6 position of the α-tetralone moiety is a requirement for MAO-A and MAO-B inhibition, and that a benzyloxy substituent on this position is more favourable for MAO-A inhibition than phenylethoxy and phenylpropoxy substitution. For MAO-B inhibition, alkyl and halogen substituents on the meta and para positions of the benzyloxy ring enhance inhibitory potency. It may be concluded that α-tetralone derivatives are promising leads for design of therapies for Parkinson’s disease and depression.  相似文献   

11.
2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon = 174 M?1 s?1) was ca. 8-fold more potent than the d-isomer (kon = 21.5 M?1 s?1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon = 21.5–174 M?1 s?1), while the RP-isomers were inactive even at concentrations of 0.1 mM.  相似文献   

12.
A novel series of monoamine reuptake inhibitors, the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols, have been discovered by combining virtual and focused screening efforts with design techniques. Synthesis of the two diastereomeric isomers of the molecule followed by chiral resolution of each enantiomer revealed the (2R,3S)-isomer to be a potent norepinephrine reuptake inhibitor (IC50 = 28 nM) with excellent selectivity over the dopamine transporter and 13-fold selectivity over the serotonin transporter.  相似文献   

13.
A new group of 2,3-diarylquinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para-position of the C-2 phenyl ring were synthesized and evaluated as selective COX-2 inhibitors. In vitro COX-1/COX-2 structure–activity relationships were determined by varying the substituents on the C-4 quinoline ring. Among the 2,3-diarylquinolines, 2-(4-(methylsulfonyl) phenyl)-3-phenylquinoline-4-carboxylic acid (8) exhibited the highest potency and selectivity for COX-2 inhibitory activity (COX-2 IC50 = 0.07 μM; selectivity index = 687.1) that was more selective than the reference drug celecoxib (COX-2 IC50 = 0.06 μM; selectivity index = 405). A molecular modeling study where 8 was docked in the binding site of COX-2 indicated that the p-MeSO2 COX-2 pharmacophore group on the C-2 phenyl ring is oriented in the vicinity of the COX-2 secondary pocket (Arg513, Phe518 and Val523) and the carboxylic acid substituent can interact with Ser530. The structure activity data acquired indicate that the size and nature of the C-4 quinoline substituent are important for COX-2 inhibitory activity.  相似文献   

14.
The xanthophyll carotenoids lutein and zeaxanthin constitute the major carotenoids of the macular pigment in the human retina where they are thought to act in part to prevent light induced oxidative damage associated with age-related macular degeneration (AMD). The highly selective uptake of these pigments is mediated by specific carotenoid-binding proteins (GSTP1 and StARD3) recently identified in our laboratory. Carotenoids are hydrophobic in nature, so we first systematically optimized carotenoid preparations that are nano-dispersed in aqueous buffers, and then we used a new-generation surface plasmon resonance (SPR) protocol called FastStep?, which is significantly faster than conventional SPR assays. We have explored carotenoid-binding interactions of five proteins: human serum albumin (HSA), β-lactoglobulin (LG), steroidogenic acute regulatory domain proteins (StARD1, StARD3) and glutathione S- transferase Pi isoform (GSTP1). HSA and LG showed relatively weak interaction with carotenoids (KD > 1 μM). GSTP1 evidenced high affinity and specificity towards zeaxanthin and meso-zeaxanthin with KD values 0.14 ± 0.02 μM and 0.17 ± 0.02 μM, respectively. StARD3 expressed a relative high specificity towards lutein with a KD value of 0.59 ± 0.03 μM, whereas StARD1 exhibited a relatively low selectivity and affinity (KD > 1 μM) towards the various carotenoids tested.  相似文献   

15.
Benzylamides of pentanedioic acid were identified as inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) by high-throughput screening. Optimisation to 2-adamantyl amides yielded inhibitors with single digit nanomolar IC50s on the 11β-HSD1 human isoform. The hydroxy adamantyl amide lead compound was selective against 11β-hydroxysteroid dehydrogenase type 2 (selectivity ratio >1000) and displayed good inhibition of 11β-HSD1 (IC50 < 0.1 μM) in a cellular model (3T3L1 adipocytes).  相似文献   

16.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

17.
《Process Biochemistry》2014,49(7):1107-1112
Aromatic β-amino ketones/alcohols such as adrenalone play an important role in some stereoselective synthesis of pharmaceuticals. Unfortunately, the transformation of aromatic β-amino ketones to their chiral alcohols has been carried out chemically as no corresponding biocatalyst has been available. Here, a novel carbonyl reductase responsible for the reduction of adrenalone to (R)-(−)-epinephrine was identified and characterized from Kocuria rhizophila. This enzyme was purified to homogeneity by ammonium sulfate precipitation followed by ion-exchange column chromatography, hydrophobic chromatography and gel chromatography. The purified enzyme yielded pure (R)-enantiomer product with high activity and utilized NADH as the cofactor. The enzyme had special significance by showing selectivity for many aromatic β-amino ketones/alcohols such as 2-amino-acetophenone, 2-amino-4′-hydroxyacetophenone, isoproterenol and ephedrine. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for adrenalone and NADH were 14.62 μmol/(min mg) protein and 0.189 mM, 11.66 μmol/(min mg) protein and 0.204 mM respectively. These properties ensure the enzyme a promising future for industrial application as a replacement of chemical synthesis of aromatic β-amino chiral alcohols.  相似文献   

18.
《Process Biochemistry》2010,45(12):1916-1922
The bond selective hydrolysis of glycyrrhizin (GL) to glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) catalyzed by recombinant β-d-glucuronidase from Escherichia coli BL21 (PGUS-E) was successfully performed in an ionic liquid (IL)/buffer biphasic system. Five ILs were analyzed, however, a hydrophobic IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) showed the best biocompatibility with PGUS-E. An obvious enhancement in the initial reaction rate, substrate conversion, GAMG yield and chemical bond selectivity (Scb) was observed using 40% (v/v) [BMIM]PF6/buffer as the reaction medium when compared to the acetate buffer medium. Under the optimized conditions (pH 6.0, temperature 50 °C, substrate concentration 6 mM and shaking speed 200 rpm), the initial reaction rate, the GAMG yield and the Scb reached 3.15 mM h−1, 74.36% and 98.12%, respectively. The recyclability of [BMIM]PF6 was also studied and found to be reusable for five batches with high recovery percentage (≥92%). Furthermore, the desired product and byproduct were easily separated since they were distributed in different phases. Additionally, higher Vmax (3.14 versus 2.24 mM h−1), lower apparent Km (1.21 versus 1.80 mM) and Ea (25.97 versus 32.60 kJ mol−1) were achieved in [BMIM]PF6/buffer biphasic system than that in monophasic buffer system.  相似文献   

19.
5-(3,4,5-Trimethoxybenzoyl)-4-amimopyrimidine derivatives were found as a novel chemical class of potent and highly selective phosphodiesterase 5 inhibitors. A pseudo-ring formed by an intramolecular hydrogen bond constrained the conformation of 3-chloro-4-methoxybenzylamino and 3,4,5-trimethoxybenzoyl substituents and led to the discovery of T-6932 (19a) with a potent PDE5 inhibitory activity (IC50 = 0.13 nM) and a high selectivity over PDE6 (IC50 ratio: PDE6/PDE5 = 2400). Further modification at the 2-position of T-6932 resulted in the finding of 26, which exhibited potent relaxant effects on isolated rabbit corpus cavernosum (EC30 = 11 nM) with a high PDE5 selectivity over PDE6 (IC50 ratio: PDE6/PDE5 = 2800).  相似文献   

20.
A series of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel HDACs inhibitors were designed, synthesized and evaluated. Most of these compounds displayed good to excellent inhibitory activities against HDAC1, 3, 6. The IC50 values of compound 10r against HDAC1, HDAC3, HDAC6 was 1.14 ± 0.03 nM, 3.56 ± 0.08 nM, 11.43 ± 0.12 nM. Compound 10r noticeably up-regulated the level of histone H3 acetylation compared to the SAHA. Most of the compounds showed the strong anti-proliferative activity against human cancer cell lines including RMPI8226 and HCT-116. The IC50 values of Compounds 10r and 10t against RPMI8226 was 2.39 ± 0.20 μM, 1.41 ± 0.44 μM, respectively, and the HCT-116 was sensitive to the compounds 10h, 10m, 10r, 10w with the IC50 values <1.9 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号