首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinesin spindle protein (KSP) belongs to the kinesin superfamily of microtubule-based motor proteins. KSP is responsible for the establishment of the bipolar mitotic spindle which mediates cell division. Inhibition of KSP expedites the blockade of the normal cell cycle during mitosis through the generation of monoastral MT arrays that finally cause apoptotic cell death. As KSP is highly expressed in proliferating/cancer cells, it has gained considerable attention as a potential drug target for cancer chemotherapy. Therefore, this study envisaged to design novel KSP inhibitors by employing computational techniques/tools such as pharmacophore modelling, virtual database screening, molecular docking and molecular dynamics. Initially, the pharmacophore models were generated from the data-set of highly potent KSP inhibitors and the pharmacophore models were validated against in house test set ligands. The validated pharmacophore model was then taken for database screening (Maybridge and ChemBridge) to yield hits, which were further filtered for their drug-likeliness. The potential hits retrieved from virtual database screening were docked using CDOCKER to identify the ligand binding landscape. The top-ranked hits obtained from molecular docking were progressed to molecular dynamics (AMBER) simulations to deduce the ligand binding affinity. This study identified MB-41570 and CB-10358 as potential hits and evaluated these experimentally using in vitro KSP ATPase inhibition assays.  相似文献   

2.
The kinesin spindle protein (KSP, also known as Eg5) is essential for the proper separation of spindle poles during mitosis, and inhibition results in mitotic arrest and the formation of characteristic monoaster spindles. Several distinct classes of KSP inhibitors have been described previously in the public and patent literature. However, most appear to share a common induced-fit allosteric binding site, suggesting a common mechanism of inhibition. In a high-throughput screen for inhibitors of KSP, a novel class of thiazole-containing inhibitors was identified. Unlike the previously described allosteric KSP inhibitors, the thiazoles described here show ATP competitive kinetic behavior, consistent with binding within the nucleotide binding pocket. Although they bind to a pocket that is highly conserved across kinesins, these molecules exhibit significant selectivity for KSP over other kinesins and other ATP-utilizing enzymes. Several of these compounds are active in cells and produce a phenotype similar to that observed with previously published allosteric inhibitors of KSP.  相似文献   

3.
Mechanism of inhibition of human KSP by ispinesib   总被引:1,自引:0,他引:1  
KSP, also known as HsEg5, is a kinesin that plays an essential role in the formation of a bipolar mitotic spindle and is required for cell cycle progression through mitosis. Ispinesib is the first potent, highly specific small-molecule inhibitor of KSP tested for the treatment of human disease. This novel anticancer agent causes mitotic arrest and growth inhibition in several human tumor cell lines and is currently being tested in multiple phase II clinical trials. In this study we have used steady-state and pre-steady-state kinetic assays to define the mechanism of KSP inhibition by ispinesib. Our data show that ispinesib alters the ability of KSP to bind to microtubules and inhibits its movement by preventing the release of ADP without preventing the release of the KSP-ADP complex from the microtubule. This type of inhibition is consistent with the physiological effect of ispinesib on cells, which is to prevent KSP-driven mitotic spindle pole separation. A comparison of ispinesib to monastrol, another small-molecule inhibitor of KSP, reveals that both inhibitors share a common mode of inhibition.  相似文献   

4.
The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.  相似文献   

5.
Kinesin motor proteins utilize the energy from ATP hydrolysis to transport cellular cargo along microtubules. Kinesins that play essential roles in the mechanics of mitosis are attractive targets for novel antimitotic cancer therapies. Monastrol, a cell-permeable inhibitor that specifically inhibits the kinesin Eg5, the Xenopus laevis homologue of human KSP, can cause mitotic arrest and monopolar spindle formation. In this study, we show that the extent of monastrol inhibition of KSP microtubule-stimulated ATP hydrolysis is highly dependent upon ionic strength. Detailed kinetic analysis of KSP inhibition by monastrol in the presence and absence of microtubules suggests that monastrol binds to the KSP-ADP complex, forming a KSP-ADP-monastrol ternary complex, which cannot bind to microtubules productively and cannot undergo further ATP-driven conformational changes.  相似文献   

6.

Background

Vascular endothelial growth factor (VEGF) is involved in the growth of new blood vessels that feed tumors and kinesin spindle protein (KSP) plays a critical role in mitosis involving in cell proliferation. Simultaneous silencing of VEGF and KSP, an attractive and viable approach in cancer, leads on restricting cancer progression. The purpose of this study is to examine the therapeutic potential of dual gene targeted siRNA cocktail on human hepatocellular carcinoma Hep3B cells.

Results

The predesigned siRNAs could inhibit VEGF and KSP at mRNA level. siRNA cocktail showed a further downregulation on KSP mRNA and protein levels compared to KSP-siRNA or VEGF-siRNA, but not on VEGF expression. It also exhibited greater suppression on cell proliferation as well as cell migration or invasion capabilities and induction of apoptosis in Hep3B cells than single siRNA simultaneously. This could be explained by the significant downregulation of Cyclin D1, Bcl-2 and Survivin. However, no sigificant difference in the mRNA and protein levels of ANG2, involving inhibition of angiogenesis was found in HUVECs cultured with supernatant of Hep3B cells treated with siRNA cocktail, compared to that of VEGF-siRNA.

Conclusion

Silencing of VEGF and KSP plays a key role in inhibiting cell proliferation, migration, invasion and inducing apoptosis of Hep3B cells. Simultaneous silencing of VEGF and KSP using siRNA cocktail yields promising results for eradicating hepatocellular carcinoma cells, a new direction for liver cancer treatment.  相似文献   

7.
Structure–activity relationship studies of diaryl amine-type KSP inhibitors were carried out. Diaryl amine derivatives with a pyridine ring or urea group were less active when compared with the parent carboline and carbazole derivatives. Optimization studies of a lactam-fused diphenylamine-type KSP inhibitor revealed that the aniline NH group and 3-CF3 phenyl group were indispensable for potent KSP inhibition. Modification with a seven-membered lactam-fused phenyl group and a 4-(trifluoromethyl)pyridin-2-yl group improved aqueous solubility while maintaining potent KSP inhibitory activity. From these studies, we identified novel diaryl amine-type KSP inhibitors with a favorable balance of potency and solubility.  相似文献   

8.
《Journal of Proteomics》2008,71(6):592-600
Microtubule interfering agents (MIAs) are anti-tumor drugs that inhibit microtubule dynamics, while kinesin spindle protein (KSP) inhibitors are substances that block the formation of the bipolar spindle during mitosis. All these compounds cause G2/M arrest and cell death. Using 2D–PAGE followed by Nano-LC-ESI-Q-ToF analysis, we found that MIAs such as vincristine (Oncovin) or paclitaxel (Taxol) and KSP inhibitors such as S-tritil-l-cysteine induce the phosphorylation of the nuclear protein p54nrb in HeLa cells. Furthermore, we demonstrate that cisplatin (Platinol), an anti-tumor drug that does not cause M arrest, does not induce this modification. We show that the G2/M arrest induced by MIAs is required for p54nrb phosphorylation. Finally, we demonstrate that CDK activity is required for MIA-induced phosphorylation of p54nrb.  相似文献   

9.
The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule‐based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre‐established lesions by means of intratumor electro‐transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP‐specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro‐transfer of siRNA is feasible and KSP‐specific siRNA may provide a novel strategy for therapeutic intervention. J. Cell. Physiol. 228: 58–64, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Biochemical analysis of the cellular target of S-trityl-l-cysteine (STLC) derivatives was performed by using the newly synthesized STLC derivative-immobilized affinity beads (3d). The affinity beads efficiently captured KSP in HCT116 cytoplasmic cell lysate. The results obtained from pull-down and competition experiments using 3d with STLC derivatives provided the first evidence for direct interaction of these derivatives with KSP in cancer cells. Design, synthesis and application of 3d were reported.  相似文献   

11.
Anti-mitotic anti-cancer drugs offer a potential platform for developing new radiotracers for imaging proliferation markers associated with the mitosis-phase of the cell-cycle. One interesting target is kinesin spindle protein (KSP)—an ATP-dependent motor protein that plays a vital role in bipolar spindle formation. In this work we synthesised a range of new fluorinated-quinazolinone compounds based on the structure of the clinical candidate KSP inhibitor, ispinesib, and investigated their properties in vitro as potential anti-mitotic agents targeting KSP expression. Anti-proliferation (MTT and BrdU) assays combined with additional studies including fluorescence-assisted cell sorting (FACS) analysis of cell-cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Additional studies using confocal fluorescence microscopy showed that these compounds induce M-phase arrest via monoaster spindle formation. Structural studies revealed that compound 20-(R) is the most potent fluorinated-quinazolinone inhibitor of KSP and represents a suitable lead candidate for further studies on designing 18F-radiolabelled agents for positron-emission tomography (PET).  相似文献   

12.
Specific enzyme activities of thymidine kinase (TK) and deoxy-cytidine kinase (dCK) increase sharply at the onset of synchronous mitosis in macroplasmodia of Physarum polycephalum. They reach a maximum in early S-phase (Physarum lacks a G1 period) and decline to a minimum in late G2. Partial inhibition of DNA synthesis with methotrexate (MTX) or hydroxyurea (HU) retards the onset of the next mitosis and provokes a superinduction of both enzymes, with dCK responding stronger than TK. The temporal pattern observed suggests that the drugs interfere with the postmitotic down-regulation of enzyme expression, possibly due to alterations of the chromatin structure. Moderate inhibition of DNA synthesis still permits the appearance of (delayed) mitoses associated with peaks of enzyme activity at elevated levels. On the other hand, stronger inhibition completely suppresses the onset of mitosis and keeps the enzyme activities at an elevated level without further oscillations. The timing mechanism of periodic enzyme induction therefore appears to be functionally linked to the mitotic signal and does not persist under a stringent DNA block.  相似文献   

13.
Kinesin spindle protein (KSP), an ATP‐dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide)) assays, combined with fluorescence‐assisted cell sorting (FACS) and Western blot studies analyzing cell‐cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7 , exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.  相似文献   

14.
The requirements for ATP synthesis during the various phases of mitosis were investigated in the oxygen-requiring eggs of the sea urchin, Strongylocentrotus purpuratus. CO in the dark, a specific inhibitor of respiration, was used to inhibit ATP synthesis. The kinetics of respiratory inhibition were determined by analyzing ATP levels with the luciferin-luciferase assay. The kinetics of mitotic inhibition were determined by analysis of the rate of mitosis. It was found that CO inhibition resulted in a decrease in the normal ATP level. Coincident with this decrease was a decrease in the rate of mitosis which stops completely when the ATP drops below 50 per cent of the normal level. With the use of various degrees of CO inhibition, the rate of mitosis is shown to be related to the resultant ATP level. These results contradict the basic premise of the energy reservoir hypothesis, and also disagree with other reports that cells in mitosis are insensitive to inhibitors of energy metabolism. Data are presented which demonstrate that these conflicting reports result from insufficient inhibition of ATP synthesis. The above findings all indicate that mitosis depends on the continuous synthesis and utilization of ATP.  相似文献   

15.
Increases in multidrug-resistant strains of Serratia marcescens are of great concern in pediatrics, especially in neonatal intensive care units. In the search for bacteriophages to control infectious diseases caused by multidrug-resistant S. marcescens , three phages (KSP20, KSP90, and KSP100) were isolated from environmental water and were characterized morphologically and genetically. KSP20 and KSP90 belonged to morphotype A1 of the family Myoviridae , and KSP100 belonged to morphotype C3 of the family Podoviridae . Analysis of the DNA region coding virion proteins, together with their morphological features, indicated that KSP20, KSP90, and KSP100 were related to the P2-like phage (temperate), T4-type phage (virulent), and phiEco32 phage (virulent), respectively. Based on amino acid sequences of the major capsid protein, KSP90 formed a new branch with a Stenotrophomonas maltophilia phage, Smp14, in the T4-type phage phylogeny. Both Smp14 and phiEco32 have been reported as potential therapeutic phages. These results suggest that KSP90 and KSP100 may be candidate therapeutic phages to control S. marcescens infection.  相似文献   

16.
During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and “ribosome adaptor,” eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift.  相似文献   

17.
A systematic survey was undertaken, of the effects of carbon monoxide and hydrogen cyanide (in the presence of 20 per cent oxygen), in darkness and light, on the relative rates of respiration, mitosis, and interphase in pea root tips. The inhibition of respiration by carbon monoxide was light-sensitive, but the inhibition by hydrogen cyanide was light-stable. The inhibitions were presumably due to combination of the inhibitor with the iron of cytochrome oxidase, in its divalent and trivalent forms respectively. In contrast, the inhibitions of mitosis by both poisons proved to be light-sensitive. The light-sensitive inhibition of mitosis by carbon monoxide shows that an iron complex is responsible for the process. That the inhibition of mitosis by hydrogen cyanide is also light-reversible shows that, in contrast with cytochrome oxidase, the mitotic iron complex remains always in the divalent state. The relative affinities of the mitotic ferrous complex, in molar units, were 0.68 for CO/O2, and 0.37 for HCN/O2. The properties of the complex are analogous to, yet distinct from, Gastrophilus haemoglobin and reduced cytochrome oxidase. It is considered that the arrest of mitosis by oxygen lack, carbon monoxide, and hydrogen cyanide is definitely due to interference with this unidentified, non-respiratory ferrous complex.  相似文献   

18.
Inhibitors of kinesin spindle protein (KSP) are a promising class of anticancer agents that cause mitotic arrest in cells from a failure to form functional bipolar mitotic spindles. Here, we report the synthesis and biological evaluation of a novel series of tetrahydro-β-carboline analogs based on the structure of the known KSP inhibitor HR22C16. Preferred compounds 11b, 12a and 19b were identified as potent inhibitors in a KSP ATPase assay with good anti-proliferative activity in A549 cells.  相似文献   

19.
Treatment of Vicia faba lateral roots with a range of concentrations of 5-aminouracil (5-AU) indicate that cells are stopped at a particular point in interphase. The timing of the fall in mitotic index suggests that cells are held at the S - G2 transition. When cells are held at this point, treatments with 5-AU can be used to estimate the duration of G2 + mitosis/2 of proliferating cells. Treatment with 5-AU can also be used to demonstrate the presence of subpopulations of dividing cells that differ in their G2 duration. Using this method, 5-AU-induced inhibition, we have confirmed that in V. faba lateral roots there are two populations of dividing cells: (a) a fast-dividing population, which makes up ~85% of the proliferating cell population and has a G2 + mitosis/2 duration of 3.3 hr, and (b) a slow-dividing population, which makes up ~15% of dividing cells and has a G2 duration in excess of 12 hr. These estimates are similar to those obtained from percentage labeled mitosis (PLM) curves after incorporation of thymidine-3H.  相似文献   

20.
In tobacco cell suspensions, protein synthesis and mitotic activity were inhibited by amino acid analogues: p-fluorophenylalanine (pFPA) or 5-methyltryptophan (5MT). After inhibition by pFPA, when the mitotic activity recovered in the presence of phenylalanine and casein hydrolysate, the time table of the mitotic phases was permanently altered. The inhibiting effects of 5MT were effectively reversed by tryptophan addition to the medium. Therefore 5MT was selected for reversible protein synthesis inhibition in partially synchronized cell suspensions. When cytokinin was added in a culture where protein synthesis was inhibited by 5MT, no mitosis was observed after the cells were transferred to a hormone-free medium and protein synthesis restored by tryptophan. Cytokinin must again be added in order to restore mitosis. Thus, the hormone effectiveness of cytokinins required that protein synthesis remained undisturbed. The effect of the protein synthesis inhibition by 5MT upon the metabolism of N6-benzyladenine was investigated: the intracellular concentration of this cytokinin was not altered, whereas the metabolic pool of its derivatives was quantitatively reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号