首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.  相似文献   

2.
In order to examine the effect of easily degradable substrate such as acetate on toluene mineralization by denitrification, an upflow anaerobic sludge blanket (UASB) reactor in steady state was set up. The experimentation was carried out in two stages. Initially, the reactor was fed with a carbon loading rate of 250 mg acetate-C L-1 d-1 as electron source. Nitrate loading rate (mg ) was adjusted to obtain a constant C/N ratio of 1.4. In the second stage, five toluene-C loading rates (TLR, mg toluene-C L-1 d-1), 25, 50, 75, 100 and 125, were assessed while total carbon loading rate and C/N were maintained constant at 250 mg C L-1 d-1 and 1.4, respectively. In so doing, acetate-C loading rate (mg acetate-C L-1 d-1) was gradually substituted by toluene-C. When acetate-C was the only electron source a dissimilative denitrifying process resulted as indicated by bicarbonate yield YHCO3, mg produced/mg carbon consumed) of 0.74 +/- 0.005 and denitrifying yield (YN2, mg N2 produced/mg consumed) of 0.89 +/- 0.042. The addition of different TLR did not affect the biological process as consumption carbon efficiency (CCE) values remained up to 95% +/- 3.5 and YHCO3 and YN2 values were higher than 0.71 +/- 0.03 and 0.88 +/- 0.01, respectively. Toluene mineralization by denitrification in continuous culture was successfully achieved. A simple UASB denitrifying reactor system has promising applications for complete conversion of nitrate, toluene and acetate into N2 and CO2 with a minimal sludge production.  相似文献   

3.
4.
The anaerobic biodegradation of carbon tetrachloride (CT) was investigated during the granulation process by reducing the hydraulic retention time, increasing the chemical oxygen demand (COD) and CT loadings in a 2l laboratory-scale upflow anaerobic sludge blanket (UASB) reactor. Anaerobic unacclimated sludge and glucose were used as seed and primary substrate, respectively. Granules were developed 4 weeks after start-up, which grew at an accelerated rate for 8 months, and then became fully grown. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to biomass ratio and specific methanogenic activity (SMA) were also considered during granulation. The granular sludge cultivated had a maximum diameter of 2.1 mm and SMA of 1.6 g COD/g total suspended solid (TSS) day. COD and CT removal efficiencies of 92 and 88% were achieved when the reactor was firstly operating at CT and COD loading rates of 17.5 mg/l day and 12.5 g/l day, respectively. This corresponds to hydraulic retention time of 0.28 day and food to biomass ratio of 0.5 g COD/g TSS day. Kinetic coefficients of maximum specific substrate utilization rate, half velocity coefficient, growth yield coefficient and decay coefficient were determined to be 2.4 × 10–3 mg CT/TSS day–1, 1.37 mg CT/l, 0.69 mg TSS/mg CT and 0.046 day–1, respectively for CT biotransformation during granulation.  相似文献   

5.
《Biological Wastes》1989,27(4):289-305
Anaerobic treatment of cheese whey using a 17·5-litre up-flow anaerobic sludge blanket reactor was investigated in the laboratory. The reactor was studied over a range of influent concentration from 4·5 to 38·1 g chemical oxygen demand per litre at a constant hydraulic retention time of 5 days. The reactor start-up and the sludge acclimatization were discussed. The reactor performance in terms of methane production, volatile fatty acids conversion, sludge net growth and chemical oxygen demand reduction were also presented in this paper. Over 97% chemical oxygen demand reduction was achieved in this experiment. At the influent concentration of 38·1 g chemical oxygen demand per litre, an instability of the reactor was observed. The results indicated that the up-flow anaerobic sludge blanket reactor process could treat cheese whey effectively.  相似文献   

6.
The feasibility of using upflow anaerobic sludge blanket (UASB) reactors for the treatment of dairy wastewaters was explored. Two types of UASBs were used--one operating on anaerobic sludge granules developed by us from digested cowdung slurry (DCDS) and the other on the granules obtained from the reactors of M/s EID Parry treating sugar industry wastewaters. The reactors were operated at HRT of 3 and 12 h and on COD loading rates ranging from 2.4 kg per m3 of digester volume, per day to 13.5 kg m(-3) d(-1). At the 3 h HRT, the maximum COD reduction in the DCDS-seeded and the industrial sludge-seeded reactors was 95.6% and 96.3%, respectively, better than at 12 h HRT (90% and 92%, respectively). In both the reactors, the maximum, the second best, and the third best COD reduction occurred at the loading rates of 10.8, 8.6 and 7.2 kg m3 d(-1), respectively. At loading rates higher than 10.8 kg, the reactor performance dropped precipitously. Whereas in the first few months the reactors operating on sludge from EID Parry achieved better biodegradation of the waste, compared to the reactors operated on DCDS, the performance of the latter gradually improved and matched with the performance of the former.  相似文献   

7.
The anaerobic digestion of wood ethanol stillage in a UASB reactor was studied. At organic loading rates be low 16 kg COD/m(3) day the reactor performed effectively, achieving soluble COD and BOD removals in excess of 86 and 93%, respectively. Removal of color averaged 40%. At a loading rate of 16 kg COD/m(3) day the methane yield was 0.302 L CH(4) (STP)/g COD removed, and the observed cell yield was 0.112 g VSS/g COD removed. Operation of the reactor at higher loading rates was unsuccessful. Nitrogen, phosphorus, and alkalinity were supplemented. No additions of the essential trace elements Fe, Co, and Ni were required.  相似文献   

8.
The kinetics of anaerobic treatment of slaughterhouse wastewater in batch and upflow anaerobic sludge blanket (UASB) reactors was investigated. Different concentrations of organic matter in slaughterhouse wastewater did not change the first order kinetics of the reaction. In batch digesters, methane and nitrogen production stopped after 30-40, 20-30 h, respectively, and in UASB reactors it was terminated after 30-40 days. The constant of velocity was 3.93 and 0.23 h(-1) respectively, for methane and nitrogen production. The yield coefficient, Yp was 343 and 349 ml CH4 per g of chemical oxygen demand at standard temperature and pressure conditions for batch reactors and UASB reactor, respectively.  相似文献   

9.
Summary An UASB reactor was used for the anaerobic conversion of an acidic petrochemical effluent into a methane-rich biogas. Reactor efficiency was optimal at an HRT of 1.78 days and loading rate of 7.255 kg COD/m3.d, A COD reduction of 83% was obtained. The gas production was 2.64 m/m .d (STP) and contained more than 90% CH4. A further increase in the loading rate resulted in a drastic decrease in the reactor effectivity.  相似文献   

10.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

11.
The discharge of textile wastewater containing dye in the environment is varying for both toxicology and esthetical reasons as dyes impede light penetration, damage the quality of the receiving streams. Upflow anaerobic sludge blanket reactor with anaerobic digester sludge treating starch wastewater has been used to investigate the removal efficiency of chemical oxygen demand (COD) and colour of textile dye wastewater. In this study, the starch and textile dye wastewater was mixed at 70 and 30%, respectively, and the experiments were carried out with recycle of treated wastewater at different percentage as 10, 20, 30 and 40. Maximum removal of COD and colour was 96% and 93.3%, respectively, at 30% recycle. At various OLR and HRT, the maximum removal of COD, colour was 95.9%, 93% at 6.81 kg COD/m3d and 96%, 93% with 24 h of HRT. The maximum production of biogas at 24 h of HRT with 30% recycle was about 355 l/d. The Volatile fatty acid/Alkalinity ratio of methanogenic reactor was found to be 0.049–0.053. The result provided evidence, the starch and dye wastewater have wide variation in their characteristics was treated on combination, this new technology supports the effective utilization of starch waste in destruction of dye.  相似文献   

12.
The development of granular sludge in thermophilic (55 degrees C) upflow anaerobic sludge blanket reactors was investigated. Acetate and a mixture of acetate and butyrate were used as substrates, serving as models for acidified waste-waters. Granular sludge with either Methanothrix or Methanosarcina as the predominant acetate utilizing methanogen was cultivated by allowing the loading rate to increase whenever the acetate concentration in the effluent dropped below 200 and 700 mg COD/L, respectively. The highest methane generation rates, up to 162 kg CH(4)-COD/m(3) day, or 2.53 mole CH(4)/L day, were achieved at hydraulic retention times down to 21 min, with granules consisting of Methanothrix. The formation of Methanothrix granules did not depend on the type of seed material, nor on the addition of inert support particles. The growth of granules proceeded rapidly with adapted seed material, even when the reactors were inoculated with low concentrations. With mesophilic seed materials growth of granules took much longer. Thermophilic Methanothrix granules strongly resemble mesophilic granules of the "filamentous" type. Some factors governing the thermophilic granulation process are discussed.  相似文献   

13.
Removal of organic material from poultry slaughter wastewater as determined by changes in biological oxygen demand (BOD5) was investigated by adding three different types of inoculum combining cow manure, yeast extract or hydraulic residence time as variables with response vector of reduction of BOD5. In a 3-l reactors, a 95% removal of BOD5 from poultry slaughter wastewater was obtained with organic loading rates up to 31 kg BOD5 m(-3) d(-1) without loss of stability. This 95% removal was obtained between 25 and 39 degrees C with a hydraulic residence time between 3.5 and 4.5 h. The growth of the consortium of micro-organisms in the reactor followed a first-order kinetic with a constant specific growth rate of 0.054 h(-1). It was concluded that an inoculum from cow manure added with nutrients and yeast extract allowed a 95% removal of BOD5 from poultry slaughter wastewater at ambient temperatures within a hydraulic residence time of 4 h, sharply reducing possible environmental hazards.  相似文献   

14.
Hwu CS  Lu CJ 《Biotechnology letters》2008,30(9):1589-1593
Influences of hydraulic retention time (HRT) on dechlorination of tetrachloroethene (PCE) were investigated in an upflow anaerobic sludge blanket (UASB) reactor inoculated with anaerobic granular sludge non-pre-exposed to chlorinated compounds. PCE was introduced into the reactor at a loading rate of 3 mg/l d. PCE removal increased from 51 +/- 5% to 87 +/- 3% when HRT increased from 1 to 4 d, corresponding to an increase in the PCE biotransformation rate from 10.5 +/- 2.3 to 21.3 +/- 3.7 mumol/d. A higher ethene production rate, 0.9 +/- 0.2 mumol/d, was attained without accumulation of dichloroethenes at the HRT of 4 d. Dehalococcoides-like species were detected in sludge granules by fluorescence in situ hybridization, with signal strength in proportion to the extent of PCE dechlorination.  相似文献   

15.
H2-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates,Aeromonas spp. (7 strains),Pseudomonas spp. (3 strains), andVibrio spp. (5 strains); from anaerobic isolates,Actinomyces spp. (11 strains),Clostridium spp. (7 strains), andPorphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H2 production yield in the batch cultivations after 12h (2.24–2.74 OD at 600 nm and 1.02–1.22 mol H2/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H2 producers in an anaerobic granular sludge exist in large proportions and their performance in terms of H2 production is quite similar.  相似文献   

16.
17.
The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT’s) of 13.3, 10 and 5.0 h. An overall reduction of 80–86% for CODtotal; 51–73% for CODcolloidal and 20–55% for CODsoluble was found at a total HRT of 5–10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of CODtotal, CODcolloidal and CODsoluble increased up to 92, 89 and 80%, respectively. However, the removal efficiency of CODsuspended in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of CODsuspended was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m−2 day−1. The removal efficiency was decreased by a value of 34 and 43% at a higher OLR’s of 7.4 and 17.8 g COD m−2 day−1, respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 × 104 MPN per 100 ml at a HRT of 13.3 h, 4.9 × 105 MPN per 100 ml at a HRT of 10 h and 9.4 × 105 MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log10 reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB–MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB–MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.  相似文献   

18.
Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.  相似文献   

19.
A column reactor, in which the bottom two-thirds were occupied by a sludge blanket and the upper one-third by submerged clay rings, was evaluated using slaughterhouse wastewater as substrate. The reactor was operated at 35°C at loading rates varying from 5 g to 45 g chemical oxygen demand (COD) 1–1 × day–1 at an influent concentration of 2450 mg COD 1–1. A maximum substrate removal rate of 32 g COD 1–1 × day–1, coupled with a methane production rate of 6.91 × 1–1 × day–1 (STP), was obtained. This removal rate is significantly higher than those previously reported. The rate of substrate utilization by the biomass was 1.22 g COD (g volatile suspended solids)–1 day–1. COD removal was over 96% with loading rates up to 25 g COD 1–1 × day–1, at higher loading rates performance decreased rapidly. It was found that the filter element of the reactor was highly efficient in retaining biomass, leading to a biomass accumulation yield coefficient of 0.029 g volatile suspended solids g–1 COD, higher than reported previously for either upflow anaerobic sludge-blanket reactors or anaerobic filters operating independently.  相似文献   

20.
The main purpose of this study was to evaluate the performance of a UASB reactor treating diluted black liquor from a Kraft pulp mill, which simulates an unbleached Kraft plant wastewater, under different operational conditions, including partial recycling of the effluent. The reactor's performance was evaluated from the standpoint of COD, pH, volatile acid concentration, alkalinity, concentration of methane in the biogas, and microbiological examinations of the sludge. Without recirculation the reduction of the HRT from 36 to 30h did not significantly affect the average COD removal efficiency. The parameter displaying the greatest variation was the average concentration of effluent volatile acids, which increased by 16%. With recirculation the reduction of the HRT from 30 to 24h increased the average COD removal efficiency from 75% to 78%. In this case, the average effluent alkalinity also showed an increase. The use of partial recirculation of the effluent did not improve significantly the COD removal under the operational conditions tested in this work, but it was possible to operate the reactor with lower hydraulic retention time without disintegration of the granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号