首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclotides are fascinating microproteins (≈30–40 residues long) with a unique head-to-tail cyclized backbone, stabilized by three disulfide bonds forming a cystine knot. This unique topology makes them exceptionally stable to chemical, thermal and biological degradation compared to other peptides of similar size. Cyclotides have been also found to be highly tolerant to sequence variability, aside from the conserved residues forming the cystine knot, able to cross cellular membranes and modulate intracellular protein–protein interactions both in vitro and in vivo. These properties make them ideal scaffolds for many biotechnological applications. This article provides and overview of the properties of cyclotides and their applications as molecular imaging agents and peptide-based therapeutics.  相似文献   

2.
eIF3: a versatile scaffold for translation initiation complexes   总被引:1,自引:0,他引:1  
Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNA(i)(Met), and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis.  相似文献   

3.
4.
Targeting the molecular pathways associated with angiogenesis offers great potential in detecting disease pathology using in vivo imaging technologies. Initiation of angiogenesis requires activation and migration of endothelial cells in order for neovascularization to proceed. Endothelial cells associate with the extracellular matrix through specific interactions with a variety of cell adhesion receptors known as integrins. Peptides containing the tripeptide sequence RGD are known to bind with high affinity to the vβ3 and vβ5 integrins associated with angiogenesis. We present herein the synthesis and in vitro binding affinity of the RGD-containing peptide NC-100717 and a range of molecular probes derived from this intermediate.  相似文献   

5.
We have developed a three-step cross-linking procedure that is specifically targeted at the carbohydrate on a protein and applied it to CD4 as a model system for studying the role of multivalent interactions in function. In the first step CD4 was oxidized with periodate, creating aldehydes that served as targets for the subsequent chemistry. Next the aldehydes were modified with cystamine, converting the reactive group into a thiol. Finally cross-linking through the thiol moiety was generated with the homobifunctional cross-linker bismaleimidohexane. With this procedure, approximately 60% of the CD4 was converted into higher molecular weight complexes that were soluble and retained function as assessed by glycoprotein gp120 binding activity. CD4 dimers and tetramers by mass were 4 and 15 times as active as CD4 monomer in blocking virus infection with HTLV-IIIB in an in vitro cellular assay. The cross-linking chemistry provides an efficient method for producing homomultimers of a glycoprotein.  相似文献   

6.
Feng Y  Walsh CA 《Nature cell biology》2004,6(11):1034-1038
Filamins were discovered as the first family of non-muscle actin-binding protein. They are lage cytoplasmic proteins that cross-link cortical actin into a dynamic three-dimensional structure. Filamins have also been reported to interact with a large number of cellular proteins of great functional diversity, suggesting that they are unusually versatile signalling scaffolds. More recently, genetic mutations in filamin A and B have been reported to cause a wide range of human diseases, suggesting that different diseases highlight distinct filamin interactions.  相似文献   

7.
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

8.
Binding of proteins to DNA is usually considered 1D with one protein bound to one DNA molecule. In principle, proteins with multiple DNA binding domains could also bind to and thereby cross-link different DNA molecules. We have investigated this possibility using high-mobility group A1 (HMGA1) proteins, which are architectural elements of chromatin and are involved in the regulation of multiple DNA-dependent processes. Using direct stochastic optical reconstruction microscopy (dSTORM), we could show that overexpression of HMGA1a-eGFP in Cos-7 cells leads to chromatin aggregation. To investigate if HMGA1a is directly responsible for this chromatin compaction we developed a DNA cross-linking assay. We were able to show for the first time that HMGA1a can cross-link DNA directly. Detailed analysis using point mutated proteins revealed a novel DNA cross-linking domain. Electron microscopy indicates that HMGA1 proteins are able to create DNA loops and supercoils in linearized DNA confirming the cross-linking ability of HMGA1a. This capacity has profound implications for the spatial organization of DNA in the cell nucleus and suggests cross-linking activities for additional nuclear proteins.  相似文献   

9.
A pyridoxamine coenzyme amino acid chimera (Pam) was incorporated into a designed betabeta alpha motif peptide to explore the ability of a small synthetic peptide scaffold to influence coenzyme mediated transamination. Structural characterization of this peptide by CD and NMR spectroscopy suggested that the pyridoxamine containing residue was accommodated into the sheet region of the motif without gross structural perturbations. To investigate the ability of the peptide architecture to influence the amount and distribution of transamination product in the conversion of pyruvic acid to alanine, a family of 18 related peptides, CBP01-CBP18, was rapidly synthesized and purified in parallel. These peptides were designed to generate different peptide environments for the pyridoxamine functionality within the context of the structured betabeta alpha peptide motif. Studies of peptide-mediated transamination revealed clear trends in stereospecific production of L-alanine as a function of substitutions at positions five and seven of the motif. Furthermore, new trends favoring the other enantiomeric product resulted from the addition of copper(II) ion, a known chelator of the transamination reaction intermediates. In the presence of copper(II) ion the amount of alanine product generated was increased by up to 32-fold relative to a pyridoxamine model compound in the presence of copper(II) ion. These functional results, accompanied by further CD and NMR spectroscopic analysis of CBP14, one of the CBP family of peptides, suggest that small synthetic betabeta alpha motif peptides can be used to influence the functional properties of coenzymes.  相似文献   

10.
RACK1 serves as a scaffold protein for a wide range of kinases and membrane-bound receptors. It is a WD-repeat family protein and is predicted to have a beta-propeller architecture with seven blades like a Gbeta protein. Mass spectrometry studies have identified its association with the small subunit of eukaryotic ribosomes and, most recently, it has been shown to regulate initiation by recruiting protein kinase C to the 40S subunit. Here we present the results of a cryo-EM study of the 80S ribosome that positively locate RACK1 on the head region of the 40S subunit, in the immediate vicinity of the mRNA exit channel. One face of RACK1 exposes the WD-repeats as a platform for interactions with kinases and receptors. Using this platform, RACK1 can recruit other proteins to the ribosome.  相似文献   

11.
A scaffold hopping strategy, including intellectual property availability assessment, was successfully applied for the discovery of novel PI3K inhibitors. Compounds were designed based on the chemical structure of the lead compound ETP-46321, a potent PI3K inhibitor, previously reported by our group. The new generated compounds showed good in vitro potency and selectivity, proved to inhibit potently the phosphorylation of AKTSer473 in cells and demonstrated to be orally bioavailable, thus becoming potential back-up candidates for ETP-46321.  相似文献   

12.
The molecular coupling of CAS and Crk in response to integrin activation is an evolutionary conserved signaling module that controls cell proliferation, survival and migration. However, when deregulated, CAS/Crk signaling also contributes to cancer progression and developmental defects in humans. Here we highlight recent advances in our understanding of how CAS/Crk complexes assemble in cells to modulate the actin cytoskeleton, and the molecular mechanisms that regulate this process. We discuss in detail the spatiotemporal dynamics of CAS/Crk assembly and how this scaffold recruits specific effector proteins that couple integrin signaling networks to the migration machinery of cells. We also highlight the importance of CAS/Crk signaling in the dual regulation of cell migration and survival mechanisms that operate in invasive cells during development and pathological conditions associated with cancer metastasis.  相似文献   

13.
Epidemiological studies have shown that consumption of cruciferous vegetables, such as, broccoli and cabbages, is associated with a reduced risk of developing cancer. This phenomenon has been attributed to specific glucosinolates among the ~30 glucosinolates that are typically present as natural products characteristic of cruciferous plants. Accordingly, there has been a strong interest to produce these compounds in microbial cell factories as it will allow production of selected beneficial glucosinolates. We have developed a versatile platform for stable expression of multi-gene pathways in the yeast, Saccharomyces cerevisiae. Introduction of the seven-step pathway of indolylglucosinolate from Arabidopsis thaliana to yeast resulted in the first successful production of glucosinolates in a microbial host. The production of indolylglucosinolate was further optimized by substituting supporting endogenous yeast activities with plant-derived enzymes. Production of indolylglucosinolate serves as a proof-of-concept for our expression platform, and provides a basis for large-scale microbial production of specific glucosinolates for the benefit of human health.  相似文献   

14.
In continuation of our efforts toward hit identification and optimization for a B-Raf kinase project, we have employed a scaffold hopping strategy. The original HTS hit scaffold pyrazolo[1,5-a]pyrimidine was replaced with different thienopyrimidine and thienopyridine scaffolds to append the optimal pharmacophore moieties in order to generate novel B-raf kinase inhibitors with desirable potency and properties. This strategy led to the identification of additional lead compound 11b which had good enzyme and cell potency, while maintaining selectivity over a number of kinases.  相似文献   

15.
16.
Signal specificity of multifunctional enzymes is achieved through protein-protein interactions involving specific domains on scaffold proteins. p62 (also known as sequestosome 1) is such a scaffold protein that possesses PB1 and UBA domains, and the TRAF6 binding sequence. Proteins recruited to these domains enable p62 to integrate kinase-activated and ubiquitin-mediated signaling pathways. The biological function of p62 has been studied in diverse systems and processes such as osteoclastogenesis, inflammation, differentiation, neurotrophin biology and obesity. The availability of mice in which p62 has been genetically inactivated is providing new insight into the mechanism and function of p62 at a whole-organism level.  相似文献   

17.
We have identified four isoforms of c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), a scaffold protein that participates in JNK mitogen-activated protein kinase cascades, termed JSAP1a, JSAP1b, JSAP1c, and JSAP1d. The previously identified JSAP1 was renamed JSAP1a to avoid confusion. Analyses of the exon-intron structure of the jsap1 gene indicated that the isoforms are generated through alternative splicing involving exons 5 and 6. The mRNA expression levels of the JSAP1 isoforms differed among the mouse tissues examined. We also investigated the region of JSAP1 responsible for its interaction with JNK, and found that the JNK-binding domain is located between aa residues 201 and 217 in JSAP1a, which is encoded by part of exon 6. As all the JSAP1 isoforms contain this binding domain, we examined the binding affinity of the JSAP1 isoforms for JNK1, JNK2, and JNK3. JSAP1c and JSAP1d, which contain a 31-aa sequence not present in JSAP1a or JSAP1b, had a lower binding affinity for the JNKs, especially JNK3. These results suggest that JSAP1c and JSAP1d may attenuate the scaffolding activity of JSAP1a and/or JSAP1b in JNK cascades, especially the JNK3 cascades.  相似文献   

18.
The concept of scaffolds that can be equipped with artificial biochemically active sites has gained recent interest in the field of protein design. Members of the lipocalin protein family represent promising model systems in this respect. Especially prototypic lipocalins, such as the retinol-binding protein or the bilin-binding protein (BBP), exhibit a structurally simple one-domain fold with a conformationally well conserved beta-barrel as their central motif. This type of supersecondary structure is made of a cylindrically closed beta-sheet of eight antiparallel strands. At the open end of the barrel the beta-strands are connected by four loops in a pairwise manner so that a pocket for the ligand is formed. In a rational protein design study a metal-binding site was functionally grafted on the solvent-exposed surface of the beta-barrel, whereby the rigid backbone conformation permitted the spatially defined arrangement of three His side chains. In a combinatorial protein design approach, the natural ligand pocket of a lipocalin was reshaped. In this manner variants of the BBP were engineered which exhibit high affinity and remarkable specificity for haptens like fluorescein and digoxigenin. The so-called 'anticalins', i.e. artificial lipocalins recognizing prescribed ligands, could provide an interesting alternative to recombinant antibody fragments. Consequently, the use of lipocalins as a scaffold opens new applications for members of this functionally diverse protein family in biotechnology and medicine.  相似文献   

19.
The unique catalytic potential of the fungal enzyme pyranose oxidase was demonstrated by preparative conversions of a variety of carbohydrates, and by extensive chemical characterization of the reaction products with NMR spectroscopy. The studies revealed that POx not only oxidizes most substrates very efficiently but also that POx possesses a glycosyl-transfer potential, producing disaccharides from beta-glycosides of higher alcohols. Although most substrates are oxidized by POx at the C-2 position, several substrates are converted into the 3-keto-derivatives. On the basis of these products, strategies are developed for the convenient production of sugar-derived synthons, rare sugars and fine chemicals by combining biotechnical and chemical methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号