首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel class of phenylacetic acid regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-2, C-3 or C-4 position was designed for evaluation as anti-inflammatory (AI) agents. A number of compounds exhibited a combination of potent in vitro cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitory activities. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-4-yl)phenylacetic acid (9a) exerted the most potent AI activity among this group of compounds. Molecular modeling studies showed that the N-difluoromethyl-1,2-dihydropyridin-2-one moiety present in 9a inserts into the secondary pocket present in COX-2 to confer COX-2 selectivity, and that the N-difluoromethyl-1,2-dihydropyrid-2-one group (9a) binds close to the region of the 15-LOX enzyme containing catalytic iron (His361, His366). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties that make it an attractive pharmacophore suitable for the design of dual COX-2/5-LOX inhibitory AI drugs.  相似文献   

2.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

3.
A novel class of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-4 or C-5 position was designed for evaluation as anti-inflammatory (AI) agents. Replacement of the 2,4-difluorophenyl ring in diflunisal by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory activities. AI structure–activity studies showed that the C-4 (14a) and C-5 (14b) salicylate regioisomers were 1.4- and 1.6-fold more potent than aspirin, and the C-5 N-acetyl-2-carboxybenzenesulfonamide regioisomer (22b) was 1.3- and 2.8-fold more potent than ibuprofen and aspirin, respectively. In vivo ulcer index (UI) studies showed that the 4- and 5-(N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl)salicylic acids (14a and 14b) were completely non-ulcerogenic since no gastric lesions were present (UI = 0) relative to aspirin (UI = 57) at an equivalent μmol/kg oral dose. The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of dual COX-2/5-LOX inhibitory AI drugs.  相似文献   

4.
A new group of acetic acid (7ac, R1 = H), and propionic acid (7df, R1 = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF2 substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO2NH2) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs.  相似文献   

5.
A hitherto unknown class of linear acetylene regioisomers were designed such that a SO2NH2 group was located at the ortho-, meta-, or para-position of the acetylene C-1 phenyl ring, and a N-hydroxypyridin-2(1H)-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three regioisomers inhibited 5-lipoxygenase (5-LOX), where the relative potency order was 2-SO2NH2 (IC50 = 10 μM) >3-SO2NH2 (IC50 = 15 μM) >4-SO2NH2 (IC50 = 68 μM) relative to the reference drug nordihydroguaiaretic acid (NDGA; IC50 = 35 μM). The 2-SO2NH2 regioisomer (ED50 = 86.0 mg/kg po) exhibited excellent oral anti-inflammatory (AI) activity that was more potent than aspirin (ED50 = 128.9 mg/kg) and marginally less potent than ibuprofen (ED50 = 67.4 mg/kg). The N-hydroxypyridin-2(1H)one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

6.
A new class of 1,3-diphenylprop-2-yn-1-ones possessing a p-MeSO2 COX-2 phamacophore on the C-3 phenyl ring was designed for evaluation as dual inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX). Among the group of compounds evaluated, 1-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)prop-2-yn-1-one (11j) exhibited excellent COX-2 inhibitory potency (COX-2 IC50 = 0.1 microM) and selectivity (SI = 300), whereas 1-(4-cyanophenyl)-3-(4-methanesulfonylphenyl)prop-2-yn-1-one (11d) exhibited an optimal combination of COX and LOX inhibition (COX-2 IC50 = 1.0 microM; COX-2 SI = 31.5; 5-LOX IC50 = 1.0 microM; 15-LOX IC50 = 3.2 microM).  相似文献   

7.
Small constrained non-peptidic molecules consisting of a polyfunctionalized rigid core, carrying appendages corresponding to arginine and aspartic acid side chains, have been recently reported to be promising for drug development. In this work, the 5,6-dihydropyridin-2-one was envisaged as a scaffold to turn into potential integrin ligands, introducing a carboxylic acid and a basic appendage. The synthesis and the antiadhesion activity of a small library of peptidomimetics capable to recognize alpha(v)beta(3) and alpha(5)beta(1) integrins has been herein reported.  相似文献   

8.
A series of novel 5-(benzyloxy)pyridin-2(1H)-ones were designed, synthesized and biologically evaluated for c-Met inhibition. Various amides and benzoimidazoles at C-3 position were investigated. A potent compound 12b with a c-Met IC50 of 12 nM was identified. This compound exhibited potent inhibition of EBC-1 cell associated with c-Met constitutive activation and showed high selectivity for c-Met than other tested 11 kinases. The binding model 12b with c-Met was disclosed by docking analysis.  相似文献   

9.
Two series of phenylsulphonyl urenyl chalcone derivatives (UCH) with various patterns of substitution were tested for their effects on nitric oxide (NO) and prostaglandin E2 (PGE2) overproduction in RAW 264.7 macrophages. None of the tested compounds reduced NO production more than 50% at 10 microM but most of them inhibited the generation of PGE2 with IC50 values under the micromolar range. Me-UCH 1, Me-UCH 5, Me-UCH 9, Cl-UCH 1, and Cl-UCH 9 were selected to evaluate their influence on human leukocyte functions and eicosanoids generation. These derivatives selectively inhibited cyclo-oxygenase-2 (COX-2) activity in human monocytes being Me-UCH 5 the most potent (IC50 0.06 microM). Selected compounds also reduced leukotriene B4 synthesis in human neutrophils by a direct inhibition of 5-lipoxygenase (5-LO) activity, with IC50 values from 0.5 to 0.8 microM. In addition, lysosomal enzyme secretion, such as elastase or myeloperoxidase as well as superoxide generation in human neutrophils were also reduced in a similar range. Our findings indicate that UCH derivatives exert a dual inhibitory effect on COX-2/5-LO activity. The profile and potency of these compounds may have relevance for the modulation of the inflammatory and nociceptive responses with reduction of undesirable side-effects associated with NSAIDs.  相似文献   

10.
A series of novel compounds with both 5-lipoxygenase (5-LO) inhibitory and histamine H(1) receptor antagonist activity were designed for the treatment of asthma. These dual-function compounds were made by connecting 5-LO and H(1) pharmacophores,N-hydroxyureas and benzhydryl piperazines, respectively. A range of in vitro activities was observed, with the furan analog 10 demonstrating both activities in an animal model. The activities observed were compared to single-function drugs.  相似文献   

11.
A series of 4-(4-hydroxyphenyl)-6-phenylpyrimidin-2(1H)-ones were identified by HTS as inhibitors of CDC7. Molecular modeling and medicinal chemistry techniques were employed to explore the SAR for this series with a focus on removing potential metabolic liabilities and improving cellular potency.  相似文献   

12.
A new class of regioisomeric acyclic triaryl (Z)-olefins possessing a 3,5-di-tert-butyl-4-hydroxyphenyl (DTBHP) 5-lipoxygenase (5-LOX) pharmacophore that is vicinal to a para-methanesulfonylphenyl cyclooxygenase-2 (COX-2) pharmacophore were designed for evaluation as selective COX-2 and/or 5-LOX inhibitors. The target compounds were synthesized via a highly stereoselective McMurry olefination cross-coupling reaction. This key synthetic step afforded a (Z):(E) olefinic mixture with a predominance for the (Z)-olefin stereoisomer. Structure-activity studies for the (Z)-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(4-methanesulfonylphenyl)-1-phenylalk-1-ene regioisomers showed that COX-1 inhibition decreased, COX-2 inhibition increased, and the COX-2 selectivity index (SI) increased as the chain length of the alkyl substituent attached to the olefinic double bond was increased (Et-->n-butyl-->n-heptyl). In this group of compounds, inhibition of both 5-LOX and 15-LOX was dependent upon the length of the alkyl substituent with the hex-1-ene compound 9c having a n-butyl substituent exhibiting potent inhibition of both 5-LOX (IC50=0.3 microM) and 15-LOX (IC50=0.8 microM) relative to the inactive (IC50>10 microM) Et and n-heptyl analogs. Compound 9c is of particular interest since it also exhibits a dual inhibitory activity against the COX (COX-1 IC50=3.0 microM, and COX-2 IC50=0.36 microM, COX-2 SI=8.3) isozymes. A comparison of the relative inhibitory activities of the two groups of regioisomers investigated shows that the regioisomers in which the alkyl substituent is attached to the same olefinic carbon atom (C-2) as the para-methanesulfonylphenyl moiety generally exhibit a greater potency with respect to COX-2 inhibition. The 4-hydroxy substituent in the 3,5-di-tert-butyl-4-hydroxyphenyl moiety is essential for COX and LOX inhibition since 3,5-di-tert-butyl-4-acetoxyphenyl derivatives were inactive inhibitors. These structure-activity data indicate acyclic triaryl (Z)-olefins constitute a suitable template for the design of dual COX-2/LOX inhibitors.  相似文献   

13.
Recently, we reported the dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) activity by some phenylsulphonyl urenyl chalcone derivatives. 2,4-dichloro-4'N[N'(4'methylphenylsulphonyl)urenyl] chalcone (Me-UCH9), was selected in the present study to determine its potential anti-inflammatory and analgesic effect after oral administration in several animal models related to the activation of COX-2 and 5-LO pathways. In the zymosan stimulated mouse air pouch model, Me-UCH9, reduced in a dose-dependent manner leukotriene B(4) (LTB(4)) levels in pouch exudates obtained at 4 h, as well as prostaglandin E(2) (PGE(2)) generated through COX-2 activation at 24 h. Tumor necrosis factor alpha (TNF-alpha) and myeloperoxidase activity were also strongly inhibited in this model. Me-UCH9 significantly reduced granuloma size and vascular index determined in the murine air pouch granuloma model of angiogenesis. In the carrageenan-induced paw edema, this compound inhibited inflammatory response and pain, as well as PGE(2) and LTB(4) content in paw edematous fluid. Analgesic properties were corroborated in the murine phenyl-p-benzoquinone-induced writhing test. Finally, Me-UCH9 exerted anti-inflammatory effects in the chronic model of rat adjuvant-induced arthritis, both inhibiting paw swelling and reducing PGE(2) content. Our findings confirm that Me-UCH9 can modulate inflammatory and nociceptive responses in relation to the dual inhibition of COX-2 and 5-LO activities presented by this compound.  相似文献   

14.
Dual COX-2/5-LO inhibitors are described as potential new therapeutic agents for inflammatory diseases. A surprisingly potent effect of a 5-LO pharmacophoric group on the COX-2 inhibition is presented as well as pharmacological in vitro and in vivo results.  相似文献   

15.
A group of novel (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)alk-1-enes was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 enzyme inhibition studies identified (Z)-1,2-diphenyl-1-(4-methanesulfonamidophenyl)oct-1-ene (8d) as a highly potent (IC50=0.03 microM), and an extremely selective [COX-2 SI (selectivity index)>3,333], COX-2 inhibitor that showed good anti-inflammatory (AI) activity (ID50=2.8 mg/kg). A molecular modeling (docking) study showed that the p-MeSO2NH group present in (Z)-8d inserts deep inside the 2 degrees-pocket of the COX-2 binding site, it undergoes a hydrophobic interaction with Ala516 and Gly519, and one of the O-atoms of the MeSO2 group participates in a weak hydrogen bonding interaction with the NH2 of Arg513 (distance= 3.85 angstroms). Similar in vitro COX-1/COX-2 enzyme inhibition studies showed that the azido compound 1-(4-azidophenyl)-1,2-diphenyloct-1-ene (9c) is also a potent and selective COX-2 inhibitor (COX-2 IC50=0.11 microM: SI>909) that exhibits good AI activity (ID50=5.0 mg/kg). A docking experiment to determine the orientation of (Z)-9c within the COX-2 binding site showed that the linear p-N3 group inserts into the COX-2 2 degrees-pocket, where it undergoes an ion-ion (electrostatic) interaction with Arg513. Structure-activity data acquired indicate that an olefin having either a C-1 p-MeSO2NH-phenyl, or a p-N3-phenyl, substituent, that is, cis to a C-2 unsubstituted phenyl substituent, in conjunction with C-1 unsubstituted phenyl and C-2 alkyl substituents, provides a novel template to design acyclic olefinic COX-2 inhibitors.  相似文献   

16.
The NK1 and NK2 receptor activity of a series of 5-[(3,5-bis(trifluoromethyl)phenyl)methoxy]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl-1-piperidines was evaluated. Compounds 11d, 11e, 11f, 12a, and 12k were found to be our most potent inhibitors.  相似文献   

17.
5-Lipoxygenase (5-LOX) is important enzyme in the biosynthesis of leukotrienes, and is a potential target in the treatment of asthma and allergy. We designed and synthesized a series of benzoxazoles and benzothiazoles as 5-LOX inhibitors. Fourteen compounds prepared showed the inhibition of LTC4 formation with IC50 value of 0.12–23.88 μM. Also two compounds 2d and 2g showed improved airway hypersensitiveness.  相似文献   

18.
A group of (E)-3-(4-methanesulfonylphenyl)acrylic acids possessing a substituted-phenyl ring (4-H, 4-Br, 3-Br, 4-F, 4-OH, 4-OMe, 4-OAc, and 4-NHAc) attached to the acrylic acid C-2 position were prepared using a stereospecific Perkin condensation reaction. A related group of compounds having 4- and 3-(4-isopropyloxyphenyl)phenyl, 4- and 3-(2,4-difluorophenyl)phenyl and 4- and 3-(4-methanesulfonylphenyl)phenyl substituents attached to the acrylic acid C-2 position were also synthesized, using a palladium-catalyzed Suzuki cross-coupling reaction, for evaluation as dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors. (E)-2-(3-Bromophenyl)-3-(4-methanesulfonylphenyl)acrylic acid (9h), and compounds having 4-(4-isopropyloxyphenyl-, 2,4-difluorophenyl-, or 4-methylsulfonylphenyl)phenyl moieties at the acrylic acid C-2 position (11a,b,d), were particularly potent COX-2 inhibitors with a high COX-2 selectivity index (COX-2 IC50 approximately 0.32 microM, SI > 316) similar to the reference drug rofecoxib (COX-2 IC50 = 0.5 microM, SI > 200). Acrylic acid analogs with a C-2 4-hydoxyphenyl (9d, IC50 = 0.56 microM), or 4-acetamidophenyl (9g, IC50 = 0.11 microM), substituent were particularly potent 5-LOX inhibitors that may participate in an additional specific hydrogen-bonding interaction. A number of compounds possessing a C-2 substituted-phenyl moiety (4-Br, 4-F, and 4-OH), or a 4- or 3-(2,4-difluorophenyl)phenyl moiety, showed potent 15-LOX inhibitory activity (IC50 values in the 0.31-0.49 microM range) relative to the reference drug luteolin (IC50 = 3.2 microM). Compounds having a C-2 4-acetylaminophenyl, or 4-(2,4-difluorophenyl)phenyl, moiety exhibited anti-inflammatory activities that were equipotent to aspirin, but less than that of celecoxib. The structure-activity data acquired indicate the acrylic acid moiety constitutes a suitable scaffold (template) to design novel acyclic dual inhibitors of the COX and LOX isozymes.  相似文献   

19.
A convenient and mild synthesis of 5-bromo-N4-substituted-1-(beta-D-arabinofuranosyl)cytosine and 5-bromo-O4-methyl-1-(beta-D-arabinofuranosyl)pyrimidin-2(1H)-one derivatives by selective oxyfunctionalization of the corresponding 4-thionucleosides with 3,3-dimethyldioxirane is reported. The cytotoxicity and the antiviral activity against parainfluenza 1 (Sendai virus) of all new synthesized products are also reported.  相似文献   

20.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号