首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen receptor alpha (ERα) and retinoic acid receptors (RARs) play important and opposite roles in breast cancer growth. While exposure to ERα agonists such as 17β-estradiol (E2) is related to proliferation, RAR agonists such as all-trans retinoic acid (AtRA) induce anti-proliferative effects. Although crosstalk between these pathways has been proposed, the molecular mechanisms underlying this interplay are still not completely unraveled. The aim of this study was to evaluate the effects of AtRA on ERα-mediated signaling in the ERα positive cell lines MCF7/BUS and U2OS-ERα-Luc to investigate some of the possible underlying modes of action. To do so, this study assessed the effects of AtRA on different ERα-related events such as ERα-mediated cell proliferation and gene expression, ERα-coregulator binding and ERα subcellular localization. AtRA-mediated antagonism of E2-induced signaling was observed in the proliferation and gene expression studies. However, AtRA showed no remarkable effects on the E2-driven coregulator binding and subcellular distribution of ERα. Interestingly, in the absence of E2, ERα-mediated gene expression, ERα-coregulator binding and ERα subcellular mobilization were increased upon exposure to micromolar concentrations of AtRA found to inhibit cell proliferation after long-term exposure. Nevertheless, experiments using purified ERα showed that direct binding of AtRA to ERα does not occur. Altogether, our results using MCF7/BUS and U2OS-ERα-Luc cells suggest that AtRA, without being a direct ligand of ERα, can indirectly interfere on basal ERα-coregulator binding and basal ERα subcellular localization in addition to the previously described crosstalk mechanisms such as competition of ERs and RARs for DNA binding sites.  相似文献   

2.
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used α-tocopherol transfer protein knockout (α-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F2α (8-iso-PGF2α) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

3.
Approximately, 7–10 million people in the world suffer from Parkinson's disease (PD). Recently, increasing evidence has suggested the protective effect of estrogens against nigrostriatal dopaminergic damage in PD. In this study, we investigated whether estrogen affects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced behavioral impairment in estrogen receptor alpha (ERα)-deficient mice. MPTP (15 mg/kg, four times with 1.5-h interval)-induced dopaminergic neurodegeneration was evaluated in ERα wild-type (WT) and knockout (KO) mice. Larger dopamine depletion, behavioral impairments (Rotarod test, Pole test, and Gait test), activation of microglia and astrocytes, and neuroinflammation after MPTP injection were observed in ERα KO mice compared to those in WT mice. Immunostaining for tyrosine hydroxylase (TH) after MPTP injection showed fewer TH-positive neurons in ERα KO mice than WT mice. Levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC, metabolite of dopamine) were also lowered in ERα KO mice after MPTP injection. Interestingly, a higher immunoreactivity for monoamine oxidase (MAO) B was found in the substantia nigra and striatum of ERα KO mice after MPTP injection. We also found an increased activation of p38 kinase (which positively regulates MAO B expression) in ERα KO mice. In vitro estrogen treatment inhibited neuroinflammation in 1-methyl-4-phenyl pyridium (MPP +)-treated cultured astrocyte cells; however, these inhibitory effects were removed by p38 inhibitor. These results indicate that ERα might be important for dopaminergic neuronal survival through inhibition of p38 pathway.  相似文献   

4.
Many conditions, such as inflammation and physical exercise, can induce endoplasmic reticulum (ER) stress. Toll-like Receptor 4 (TLR4) can trigger inflammation and ER stress events. However, there are still no data in the literature regarding the role of TLR4 in ER stress during exercise in skeletal muscle. Therefore, the current investigation aimed to verify the responses of ER stress markers in wild-type (WT) and Tlr4 global knockout (KO) mice after acute and chronic physical exercise protocols. Eight-week-old male WT and KO mice were submitted to acute (moderate or high intensity) and chronic (4-week protocol) treadmill exercises. Under basal conditions, KO mice showed lower performance in the rotarod test. Acute high-intensity exercise increased eIF2α protein in the WT group. After the acute high-intensity exercise, there was an increase in Casp3 and Ddit3 mRNA for the KO mice. Acute moderate exercise increased the cleaved Caspase-3/Caspase-3 in the KO group. In response to chronic exercise, the KO group showed no improvement in any performance evaluation. The 4-week chronic protocol did not generate changes in ATF6, CHOP, p-IRE1α, p-eIF2α/eIF2α, and cleaved Caspase-3/Caspase-3 ratio but reduced BiP protein compared with the KO-Sedentary group. These results demonstrate the global deletion of Tlr4 seems to have the same effects on UPR markers of WT animals after acute and chronic exercise protocols but decreased performance. The cleaved Caspase-3/Caspase-3 ratio may be activated by another pathway other than ER stress in Tlr4 KO animals.  相似文献   

5.
A decrease in bone mineral density during menopause is accompanied by an increase in adipocytes in the bone marrow space. Ovariectomy also leads to accumulation of fat in the bone marrow. Herein we show increased lipid accumulation in bone marrow from estrogen receptor alpha (ERα) knockout (ERαKO) mice compared to wild‐type (WT) mice or estrogen receptor beta (ERβ) knockout (ERβKO) mice. Similarly, bone marrow cells from ERαKO mice differentiated to adipocytes in culture also have increased lipid accumulation compared to cells from WT mice or ERβKO mice. Analysis of individual adipocytes shows that WT mice have fewer, but larger, lipid droplets per cell than adipocytes from ERαKO or ERβKO animals. Furthermore, higher levels of adipose triglyceride lipase (ATGL) protein in WT adipocytes correlate with increased lipolysis and fewer lipid droplets per cell and treatment with 17β‐estradiol (E2) potentiates this response. In contrast, cells from ERαKO mice display higher perilipin protein levels, promoting lipogenesis. Together these results demonstrate that E2 signals via ERα to regulate lipid droplet size and total lipid accumulation in the bone marrow space in vivo. J. Cell. Biochem. 114: 1306–1314, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2)-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2) knockout (KO) on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d) or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT) and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD), μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.  相似文献   

7.
8.
9.
10.
11.
Hepatic COX-2 overexpression is sufficient to induce hepatitis, but its role on liver fibrosis remains unknown. We aim to elucidate possible biological effects of COX-2 in liver fibrosis using both gain-of-function and loss-of-function mouse models. COX-2 transgenic (TG) mice that specifically overexpress the human COX-2 cDNA in the liver, knockout (KO), and wild type (WT) mice were studied in two different murine fibrosis models induced by carbon tetrachloride (CCl4) injection or methionine and choline-deficient (MCD) diet. Liver injury was assessed by serum ALT and bilirubin levels and histological examination. Hepatic collagen content was determined by picrosirius red stain morphometry assay and quantitation of hydroxyproline. Hepatic stellate cell (HSC) activation was determined by immunohistochemical analysis of α-smooth muscle actin (α-SMA). mRNA expression of fibrogenic genes was assayed by real-time quantitative PCR. COX-2 protein was overexpressed in the liver of TG mice compared with WT littermates. CCl4 or MCD-induced liver fibrotic injury was equally severe in TG and WT mice, as demonstrated by similar elevated levels of hepatic collagen contents. Enhanced COX-2 expression in TG liver did not affect HSC activation and fibrogenic gene expression upon CCl4 or MCD treatment. Importantly, CCl4-treated KO mice did not show significant difference in liver fibrotic damage and fibrogenic gene expression compared with the WT counterparts. This is the first report on the effect of COX-2 in liver fibrosis based on genetic mouse models. The results suggest that COX-2 does not appear to mediate the development of liver fibrosis.  相似文献   

12.
Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V1aR), and dopamine (D2R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The CDNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2?ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V1aR in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D2R of OTKO. However, OTKO showed an increased gene expression of V1aR in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V1aR), and these changes may contribute to the decreased sexual behavior observed in OTKO females.  相似文献   

13.
《Cellular signalling》2014,26(5):1105-1117
Mast cells play important roles via FcεRI-mediated activation in allergic asthma. A nonpolymorphic MHC I-like molecule CD1d, which is mainly expressed in APCs, presents glycolipid Ag to iTCR on iNKT cells and modulates allergic responses. This study aimed to investigate the role of CD1d on IgE production and mast cell activation related to allergic asthma. Bone marrow-derived mast cells (BMMCs) from C57BL/6 Wild type (WT) or KO (CD1d−/−) mice were activated with Ag/Ab (refer to WT-act-BMMCs and KO-act-BMMCs, respectively) or α-Galactosylceramide (WT-αGal-BMMCs, KO-αGal-BMMCs) in the presence of iNKT cells. WT, KO or BMMC-transferred KO mice were sensitized and/or challenged by OVA or α-Gal to induce asthma. KO-act-BMMCs reduced intracellular Ca2 + levels, expression of signaling molecules (Ras, Rac1/2, PLA2, COX-2, NF-κB/AP-1), mediator release (histamines, leukotrienes and cytokines/chemokines), and total IgE levels versus the corresponding WT-BMMCs. KO mice reduced total and OVA-specific serum IgE levels, number of mast cells, recruiting molecules (CCR2/CCL2, VCAM-1, PECAM-1), expression of tryptase, c-kit, CD40L and cytokine mRNA, co-localization of c-kit and CD1d or iNKT cells in BAL cells or lung tissues, and PCA responses, compared with the corresponding WT mice. BMMC-transferred KO-both mice showed the restoration of all allergic responses versus KO-both mice (Ag/Ab reaction plus α-Gal). KO-αGal-BMMCs or KO-αGal mice did not show any responses. Our data suggest that CD1d-expressed mast cells may function as APC cells for iNKT cells and exacerbate airway inflammation and remodeling through up-regulating IgE production via B cell Ig class switching and mediator release in mast cells of OVA-challenged mice.  相似文献   

14.
Calcium (Ca(2+)) is an important regulator of apoptotic signaling. Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) have a high affinity for Ca(2+) ions. Uterine calbindins appear to be involved in the regulation of myometrial activity by intracellular Ca(2+). In addition, uterine calbindins are expressed in the mouse endometrium and are regulated by steroid hormones during implantation and development. The aim of the present study was to evaluate the regulation of apoptosis in the uteri of CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice. Our findings indicated that Bax protein was enhanced in the uteri of CaBP-28k and CaBP-9k/28k KO mice compared to wild-type (WT) and CaBP-9k KO mice, but no difference was observed in Bcl-2 protein expression. The expressions of caspase 3, 6, and 7 proteins were higher in both CaBP-28k and CaBP-9k/28k KO mice than in WT and CaBP-9k KO mice. These results suggest that the absence of CaBP-28k increases apoptotic signaling. We also investigated the expression of endoplasmic reticulum (ER) stress genes by Western blot analysis in calbindin KO mice. C/EBP homologous protein and immunoglobulin heavy chain-binding protein protein levels were elevated in CaBP-28k KO mice compared to WT mice. When immature mice were treated with 17β-estradiol (E2) or progesterone (P4) for 3 days, we found that the expressions of Bax and caspase 3 protein were increased by E2 treatment in WT and CaBP-9k KO mice, and by P4 treatment in CaBP-28k KO mice. These results indicate that CaBP-28k blocks the up-regulation of apoptosis-related genes and ER stress genes, implying that CaBP-28k may decrease the expression of genes involved in apoptosis and ER stress in murine uterine tissue.  相似文献   

15.
16.
目的:在原有带有GST标签的pGEX-KG载体上添加His标签,构建双标签原核表达载体,以提高纯化后的融合蛋白的纯度。方法:双酶切pGEX-KG载体,将同样带有双酶切位点编码His标签的DNA序列酶切后与其连接、转化大肠杆菌DH5α、鉴定阳性克隆并测序,并将编码雌激素受体B(ERβ)的片段构建到该载体上,分别利用GST标签和His标签对ERβ蛋白进行2次纯化。结果:构建了GST-His双标签原核表达载体,将ERβ编码片段克隆入该载体中,在原核生物中得到表达;分别用GST和His抗体进行Westernblot分析,均可检测到GST-His-ERβ融合蛋白的表达;利用此双标签载体纯化得到了纯度较高的ERβ蛋白。结论:GST-His双标签原核表达载体的构建对提高目的蛋白纯度具有重要意义。  相似文献   

17.
This study was designed to determine whether lipocalin type-prostaglandin D synthase (l-pgds) deficiency contributes to atherogenesis using gene knockout (KO) mice. A high-fat diet was given to 8-week-old C57BL/6 (wild type; WT), l-pgds KO (LKO), apolipoprotein E (apo E) KO (AKO) and l-pgds/apo E double KO (DKO) mice. The l-pgds deficient mice showed significantly increased body weight, which was accompanied by increased size of subcutaneous and visceral fat tissues. Fat deposition in the aortic wall induced by the high-fat diet was significantly increased in LKO mice compared with WT mice, although there was no significant difference between AKO and DKO mice. In LKO mice, atherosclerotic plaque in the aortic root was also increased and, furthermore, macrophage cellularity and the expression of pro-inflammatory cytokines such as interleukin-1β and monocyte chemoattractant protein-1 were significant increased. In conclusion, l-pgds deficiency induces obesity and facilitates atherosclerosis, probably through the regulation of inflammatory responses.  相似文献   

18.
19.
20.
This study explores primarily the role of the activity of monoamine oxidase B (MAOB) in the regulation of glutamic acid decarboxylase67 (GAD67) expression in distinct layers of main olfactory bulb (OlfB), which links the limbic system. Moreover, the response of GAD67 was investigated to amphetamine perturbation in the absence of MAOB activity. Immunocytochemical analysis was performed on OlfB sections prepared from the adult wild type (WT) and the MAOB gene-knocked-out (KO) mice after receiving repeated intraperitoneal injections (two doses per day, total seven doses) of saline or amphetamine, 5 mg/kg. The levels of the GAD67 immunoreactivity were approximate 25 and 38% lower in respective glomerular (GloL) and mitral cell layers (ML) of saline-treated KO mice than that of WT, whereas similar in the external plexiform or granule cell layers (GraL) of the KO and WT. In the GloL, the level of tyrosine hydroxylase was 39% lower in the KO mice than WT, implicating different dopamine content in the KO from WT. The amphetamine exposure down-regulated the levels of GAD67 in the WT layers by 46 to 52%, and in KO layers 65 to 71%, except ML. The GraL GAD67 level may be regulated by the activation of CREB, as the phosphorylated (p) CREB coexisted with GAD67, and the percentage of GAD67-expressing pCREB neurons was decreased by the amphetamine exposure. The data indicate that the activity of MAOB could modulate the regular and amphetamine-perturbed expression of GAD67 and pCREB. Thus, interactions are suggested among the MAOB activity, GABA content of OlfB, and olfaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号