首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The development of efficacious NNRTIs for HIV/AIDS therapy is commonly met with the emergence of drug resistant strains, including the Y181C variant. Using a computationally-guided approach, we synthesized the catechol diether series of NNRTIs, which display sub-nanomolar potency in cellular assays. Among the most potent were a series of 2-cyanoindolizine substituted catechol diethers, including Compound 1. We present here a thorough evaluation of this compound, including biochemical, cellular, and structural studies. The compound demonstrates low nanomolar potency against both WT and Y181C HIV-1 RT in in vitro and cellular assays. Our crystal structures of both the wildtype and mutant forms of RT in complex with Compound 1 allow the interrogation of this compound’s features that allow it to maintain strong efficacy against the drug resistant mutant. Among these are compensatory shifts in the NNRTI binding pocket, persistence of multiple hydrogen bonds, and van der Waals contacts throughout the binding site. Further, the fluorine at the C6 position of the indolizine moiety makes multiple favorable interactions with both RT forms. The present study highlights the indolizine-substituted catechol diether class of NNRTIs as promising therapeutic candidates possessing optimal pharmacological properties and significant potency against multiple RT variants.  相似文献   

9.
10.
11.
12.
6-(cyclohexylmethyl)-5-ethyl-2-((2-oxo-2-phenylethyl)thio)pyrimidin-4(3H)-one (DB-02) is a member of the newly reported synthetic anti-HIV-1 compounds dihydro-aryl/alkylsulfanyl-cyclohexylmethyl-oxopyrimidines, S-DACOs. In vitro anti-HIV-1 activity and resistance profile studies have suggested that DB-02 has very low cytotoxicity (CC50>1mM) to cell lines and peripheral blood mononuclear cells (PBMCs). It displays potent anti-HIV-1 activity against laboratory adapted strains and primary isolated strains including different subtypes and tropism strains (EC50s range from 2.40 to 41.8 nM). Studies on site-directed mutagenesis, genotypic resistance profiles revealed that V106A was the major resistance contributor for the compound. Molecular docking analysis showed that DB-02 located in the hydrophobic pocket with interactions of Lys101, Val106, Leu234, His235. DB-02 also showed non-antagonistic effects to four approved antiretroviral drugs. All studies indicated that DB-02 would be a potential NNRTI with low cytotoxicity and improved activity.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
The emergence of drug-resistant mutants of HIV-1 is a tragic effect associated with conventional long-treatment therapies against acquired immunodeficiency syndrome. These mutations frequently involve the aspartic protease encoded by the virus; knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more effective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site. These mutations modify the affinity for both substrate and ligands, thus conferring resistance. In this work, molecular dynamics simulations were performed on a native wild type HIV-1 protease and on the drug-resistant M46I/G51D double mutant. The simulation was carried out for a time of 3.5 ns using the GROMOS96 force field, with implementation of the SPC216 explicit solvation model. The results show that the flaps may exist in an ensemble of conformations between a “closed” and an “open” conformation. The behaviour of the flap tips during simulations is different between the native enzyme and the mutant. The mutation pattern leads to stabilization of the flaps in a semi-open configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号