首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Mechanism of ribosome recruitment by hepatitis C IRES RNA   总被引:9,自引:5,他引:9       下载免费PDF全文
Many viruses and certain cellular mRNAs initiate protein synthesis from a highly structured RNA sequence in the 5' untranslated region, called the internal ribosome entry site (IRES). In hepatitis C virus (HCV), the IRES RNA functionally replaces several large initiation factor proteins by directly recruiting the 43S particle. Using quantitative binding assays, modification interference of binding, and chemical and enzymatic footprinting experiments, we show that three independently folded tertiary structural domains in the IRES RNA make intimate contacts to two purified components of the 43S particle: the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). We measure the affinity and demonstrate the specificity of these interactions for the first time and show that the high affinity interaction of IRES RNA with the 40S subunit drives formation of the IRES RNA-40S-eIF3 ternary complex. Thus, the HCV IRES RNA recruits 43S particles in a mode distinct from both eukaryotic cap-dependent and prokaryotic ribosome recruitment strategies, and is architecturally and functionally unique from other large folded RNAs that have been characterized to date.  相似文献   

2.
ABSTRACT: BACKGROUND: Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Standard therapy consists of a combination of interferon-alpha and ribavirin, but many patients respond poorly, especially those infected with HCV genotypes 1 and 4. Furthermore, standard therapy is associated with severe side-effects. Thus, alternative therapeutic approaches against HCV are needed. FINDINGS: Here, we studied the effect of a new class of antiviral agents against HCV, short, partially double-stranded oligodeoxynucleotides (ODNs), on viral replication. We targeted the 5' nontranslated region (5' NTR) of the HCV genome that has previously been shown as effective target for small interfering RNAs (siRNAs) in vitro. One of the investigated ODNs, ODN 320, significantly and efficiently reduced replication of HCV replicons in a sequence-, time- and dose-dependent manner. ODN 320 targets a genomic region highly conserved among different HCV genotypes and might thus be able to inhibit a broad range of genotypes and subtypes. CONCLUSIONS: ODNs provide an additional approach for inhibition of HCV, might be superior to siRNAs in terms of stability and cellular delivery, and suitable against HCV resistant to standard therapy. This study underlines the potential of partially double-stranded ODNs as antiviral agents.  相似文献   

3.
A ribonuclease protection assay (RPA) was developed for the direct detection and quantitation of HCV RNA in infected patients' sera or plasma using HCV [(32)P]RNA from the conserved 5'-untranslated region (5'-UTR) as a probe. We were able to directly detect the presence of HCV RNA by RPA in several infected patients' samples. The viremic status of HCV infected patients with indeterminate recombinant immunoblot assay (RIBA II) was also determined by this assay. Polymerase chain reaction (PCR) was also performed on all these samples and were found to be positive with a concordance of 100% between the results of PCR and RPA. The RPA was able to detect approximately 1 pg of HCV RNA. A limited sequence heterogeneity among HCV isolates was also observed by this assay, suggesting that this may be a faster method of detecting heterogeneous HCV sequences in patients' samples. This simple and specific method could be used to quantitate HCV RNA in order to better determine viremia and follow the course of HCV infection especially when RIBA II results are indeterminate.  相似文献   

4.
Translation is initiated within the RNA of the hepatitis C virus at the internal ribosome entry site (IRES). The IRES is a 341-nucleotide element that contains a four-way helical junction (IIIabc) as a functionally important element of the secondary structure. The junction has three additional, nonpaired nucleotides at the point of strand exchange on one diagonal. We have studied the global conformation and folding of this junction in solution, using comparative gel electrophoresis and steady-state and time-resolved fluorescence resonance energy transfer. In the absence of divalent metal ions, the junction adopts an extended-square structure, in contrast to perfect four-way RNA junctions, which retain coaxial helical stacking under all conditions. The IIIabc junction is induced to fold on addition of Mg(2+), by pairwise coaxial stacking of arms, into the conformer in which the unpaired bases are located on the exchanging strands. Fluorescence lifetime measurements indicate that in the presence of Mg(2+) ions, the IIIabc junction exists in a dynamic equilibrium comprising approximately equal populations of antiparallel and parallel species. These dynamic properties may be important in mediating interactions between the IRES and the ribosome and initiation factors.  相似文献   

5.
The hepatitis C virus internal ribosome entry site (IRES) element contains a three-way junction that is important in the overall RNA conformation, and for its role in the internal initiation of translation. The junction also illustrates some important conformational principles in the folding of three-way helical junctions. It is formally a 3HS4 junction, with the possibility of two alternative stacking conformers. However, in principle, the junction can also undergo two steps of branch migration that would form 2HS1HS3 and 2HS2HS2 junctions. Comparative gel electrophoresis and ensemble fluorescence resonance energy transfer (FRET) studies show that the junction is induced to fold by the presence of Mg2+ ions in low micromolar concentrations, and suggest that the structure adopted is based on coaxial stacking of the two helices that do not terminate in a hairpin loop (i.e., helix IIId). Single-molecule FRET studies confirm this conclusion, and indicate that there is no minor conformer present based on an alternative choice of helical stacking partners. Moreover, analysis of single-molecule FRET data at an 8-msec resolution failed to reveal evidence for structural transitions. It seems probable that this junction adopts a single conformation as a unique and stable fold.  相似文献   

6.
Ribosomal protein p40 is a structural component of the eukaryotic 40S ribosomal subunit, is partly homologous to prokaryotic ribosomal protein S2, and has a long eukaryote-specific C-terminal region. The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) RNA was tested for the binding to 40S ribosomal subunits deficient in p40, saturated with recombinant p40, or pretreated with monoclonal antibody (MAB) 4F6 against p40. The apparent association constant of HCV IRES binding to 40S subunits was shown to directly depend on the p40 content in the subunits. MAB 4F6 prevented HCV IRES binding to 40S subunits and blocked translation of IRES-containing RNA in a cell-free translation system. The results implicate p40 in the binding of the HCV IRES to the ribosome and, therefore, in translation initiation on HCV RNA.  相似文献   

7.
Hepatitis C virus (HCV) translation begins within the internal ribosome entry site (IRES). We have previously isolated two RNA aptamers, 2-02 and 3-07, which specifically bind to domain II and domain III-IV of the HCV IRES, respectively, and inhibit IRES-dependent translation. To improve the function of these aptamers, we constructed two conjugated molecules of 2-02 and 3-07. These bound to the target RNA more efficiently than the two parental aptamers. Furthermore, they inhibited IRES-dependent translation about 10 times as efficiently as the 3-07 aptamer. This result indicates that combining aptamers for different target recognition sites potentiates the inhibition activity by enhancing the domain-binding efficiency.  相似文献   

8.
The internal ribosome entry site (IRES) is important for translation of hepatitis C virus (HCV) mRNA and has a unique RNA structure containing conserved domains I to IV. To investigate the function of domain II, we selected RNA aptamers that bind to domain II of HCV IRES by applying a simple and convenient selection method using a hybridized tag for fixing domain II RNA on magnetic beads instead of synthesizing long RNA. In addition, we employed surface plasmon resonance (SPR) technology to measure the binding affinity of each generation and to obtain detailed kinetic constants. The selected aptamers have a consensus sequence, 5'-UAUGGCU-3', which is complementary to the apical loop of domain II. The loop-loop interaction between the consensus sequence and domain II was confirmed by mutagenesis and nuclease mapping analyses. Binding affinities were dependent on the local structure containing the conserved sequence. The aptamers could inhibit IRES-dependent translation.  相似文献   

9.
10.
Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.  相似文献   

11.
The recent development of a cell culture model of hepatitis C virus (HCV) infection based on the JFH-1 molecular clone has enabled discovery of new antiviral agents. Using a cell-based colorimetric screening assay to interrogate a 1,200-compound chemical library for anti-HCV activity, we identified a family of 1,2-diamines derived from trans-stilbene oxide that prevent HCV infection at nontoxic, low micromolar concentrations in cell culture. Structure-activity relationship analysis of ~ 300 derivatives synthesized using click chemistry yielded compounds with greatly enhanced low nanomolar potency and a > 1,000:1 therapeutic ratio. Using surrogate models of HCV infection, we showed that the compounds selectively block the initiation of replication of incoming HCV RNA but have no impact on viral entry, primary translation, or ongoing HCV RNA replication, nor do they suppress persistent HCV infection. Selection of an escape variant revealed that NS5A is directly or indirectly targeted by this compound. In summary, we have identified a family of HCV inhibitors that target a critical step in the establishment of HCV infection in which NS5A translated de novo from an incoming genomic HCV RNA template is required to initiate the replication of this important human pathogen.  相似文献   

12.
Hepatitis C virus (HCV) infection is one of the world's major health problems, and the identification of efficient HCV inhibitors is a major goal. Here we report the isolation of efficient anti-HCV internal ribosome entry site (IRES) RNA molecules identified by a new in vitro selection method. The newly developed procedure consists of two sequential steps that use distinct criteria for selection: selection for binding and selection for cleaving. The selection protocol was applied to a population of more than 10(15) variants of an anti-hepatitis C virus ribozyme covalently linked to an aptamer motif. The ribozyme was directed against positions 357 to 369 of the HCV IRES, and the cleavage substrate was a 691-nucleotide-long RNA fragment that comprises the entire HCV IRES domain. After six selection cycles, seven groups of RNA variants were identified. A representative of each group was tested for its capacity to inhibit IRES activity using in vitro translation assays. All selected RNAs promoted significant inhibition, some by as much as 95%.  相似文献   

13.
Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation.  相似文献   

14.
The molecular environment of the internal ribosome entry site (IRES) element of hepatitis C viral (HCV) RNA in the binary complex with the human 40S ribosomal subunit was studied. To this end, RNA derivatives bearing mild UV-reactive perfluorophenylazide groups at nucleotide G87 in IRES domain II and at nucleotide A296 in the subdomain IIIe loop were used, which were prepared by the RNA complementarily-addressed modification with alkylating oligonucleotide derivatives. None of the RNA derivatives were shown to be crosslinked to the 18S rRNA of the 40S subunit. It was found that the photoreactive group of IRES nucleotide A296 was crosslinked to the 40S subunit S2/S3a, S5, and p40 (SOA) proteins. No protein crosslinking was observed for the RNA derivative containing the same photoreactive group in nucleotide G87. It was concluded that the subdomain IIIe loop of the HCV RNA IRES element in the complex with the 40S subunit is located on the outer subunit surface between the head and the body next to the "beak" near the entrance into the mRNA-binding channel. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2006, vol. 32, no. 3; see also http://www.maik.ru.  相似文献   

15.
The molecular environment of the internal ribosome entry site (IRES element) of hepatitis C viral (HCV) RNA in the binary complex with the human 40S ribosomal subunit was studied. To this end, RNA derivatives bearing mild UV-reactive perfluorophenylazide groups at nucleotide G87 in IRES domain II and at nucleotide A296 in the subdomain IIIe loop were used, which were prepared by the RNA complementarily-addressed modification with alkylating oligonucleotide derivatives. None of the RNA derivatives were shown to be crosslinked to the 18S rRNA of the 40S subunit. It was found that the photoreactive group of IRES nucleotide A296 crosslinked to the 40S subunit S2/S3a, S5, and p40 (SOA) proteins. No protein crosslinking was observed for the RNA derivative containing the same photoreactive group at nucleotide G87. It was concluded that the subdomain IIIe loop of the HCV RNA IRES element in the complex with the 40S subunit is located on the subunit between the head and the body aside the “beak” near the exit from the mRNA-binding channel.  相似文献   

16.
The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24–27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD–Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.  相似文献   

17.
Interferon (IFN)-alpha monotherapy, as well as the more effective combination therapy of IFN-alpha and ribavirin, are currently used for patients with chronic hepatitis C caused by hepatitis C virus (HCV) infection, although the mechanisms of the antiviral effects of these reagents on HCV remain ambiguous, and side effects such as anemia due to the administration of ribavirin present a problem for patients who are advanced in years. Using a recently developed reporter assay system in which genome-length dicistronic HCV RNA encoding Renilla luciferase gene was found to replicate efficiently, we found that mizoribine, an imidazole nucleoside, inhibited HCV RNA replication. The anti-HCV activity of mizoribine (IC50: approximately 100 microM) was similar to that of ribavirin. Using this genome-length HCV RNA replication monitor system, we were the first to demonstrate that the combination of IFN-alpha and ribavirin exhibited more effective anti-HCV activity than the use of IFN-alpha alone. Moreover, we found that the anti-HCV activity of mizoribine in co-treatment with IFN-alpha was at least equivalent to that of ribavirin. This effect was apparent in the presence of at least 5 microM mizoribine. Since mizoribine is currently used in several clinical applications and has not been associated with severe side effects, mizoribine is considered to be of potential use as a new anti-HCV reagent in combination with IFN-alpha.  相似文献   

18.
19.
Johnson RJ  Lin SR  Raines RT 《The FEBS journal》2006,273(23):5457-5465
Translating proteases as inactive precursors, or zymogens, protects cells from the potentially lethal action of unregulated proteolytic activity. Here, we impose this strategy on bovine pancreatic ribonuclease (RNase A) by creating a zymogen in which quiescent ribonucleolytic activity is activated by the NS3 protease of the hepatitis C virus. Connecting the N-terminus and C-terminus of RNase A with a 14-residue linker was found to diminish its ribonucleolytic activity by both occluding an RNA substrate and dislocating active-site residues, which are devices used by natural zymogens. After cleavage of the linker by the NS3 protease, the ribonucleolytic activity of the RNase A zymogen increased 105-fold. Both before and after activation, the RNase A zymogen displayed high conformational stability and evasion of the endogenous ribonuclease inhibitor protein of the mammalian cytosol. Thus, the creation of ribonuclease zymogens provides a means to control ribonucleolytic activity and has the potential to provide a new class of antiviral chemotherapeutic agents.  相似文献   

20.
We describe the exploration of N1-aryl-substituted benzimidazoles as ligands for the hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA. The design of the compounds was guided by the co-crystal structure of a benzimidazole viral translation inhibitor in complex with the RNA target. Structure-binding activity relationships of aryl-substituted benzimidazole ligands were established that were consistent with the crystal structure of the translation inhibitor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号