首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent inferences of phylogeny from molecular characters, as well as a reexamination of morphological and biological characters, reject the monophyly of the nematode genus Koerneria Meyl, 1960 (Diplogastridae). Here, Koerneria sensu lato is revised. The genus, which previously consisted of 40 species, is separated into three genera. Almost all of the transferred species are moved to the resurrected genus Allodiplogaster Paramonov & Sobolev in Skrjabin et al. (1954). Koerneria and Allodiplogaster are distinguished from each other by a weakly vs. clearly striated body surface, an undivided vs. divided stomatal cheilostom, and arrangement of the terminal ventral triplet of male genital papillae, namely in that v5 and v6 are paired and separated from v7 vs. v5–v7 being close to each other. Allodiplogaster is further divided into two groups of species, herein called the henrichae and striata groups, based on both morphological and life-history traits. The henrichae group is characterized by papilliform labial sensilla and male genital papillae, a conical tail in both males and females, and an association with terrestrial habitats and insects, whereas the striata group is characterized by setiform labial sensilla and male genital papillae, an elongated conical tail in both sexes, and an association with aquatic habitats. A second genus, Anchidiplogaster Paramonov, 1952, is resurrected to include a single species that is characterized by its miniscule stoma and teeth, unreflexed testis, and a distinct lack of male genital papillae or stomatal apodemes. Lastly, one further species that was previously included in Koerneria sensu lato is transferred to the genus Pristionchus Kreis, 1932. The revision of Koerneria sensu lato is necessitated by the great variability in its subordinate taxa, which occupy a variety of habitats, in addition to the increased attention to Diplogastridae as a model system for comparative mechanistic biology.  相似文献   

2.
3.
The trans-dihydrodiols produced during the metabolism of phenanthrene by Cunninghamella elegans, Syncephalastrum racemosum, and Phanerochaete chrysosporium were purified by high-performance liquid chromatography (HPLC). The enantiomeric compositions and optical purities of the trans-dihydrodiols were determined to compare interspecific differences in the regio- and stereoselectivity of the fungal enzymes. Circular dichroism spectra of the trans-dihydrodiols were obtained, and the enantiomeric composition of each preparation was analyzed by HPLC with a chiral stationary-phase column. The phenanthrene trans-1,2-dihydrodiol produced by C. elegans was a mixture of the 1R,2R and 1S,2S enantiomers in variable proportions. The phenanthrene trans-3,4-dihydrodiol produced by P. chrysosporium was the optically pure 3R,4R enantiomer, but that produced by S. racemosum was a 68:32 mixture of the 3R,4R and 3S,4S enantiomers. The phenanthrene trans-9,10-dihydrodiol produced by P. chrysosporium was predominantly the 9S,10S enantiomer, but those produced by C. elegans and S. racemosum were predominantly the 9R,10R enantiomer. The results indicate that although different fungi may exhibit similar regioselectivity, there still may be differences in stereoselectivity that depend on the species and the cultural conditions.  相似文献   

4.
The deduced protein product of the Bacillus subtilis gene yqfI, which is 255 residues long, shares homology (25% identity) with the Escherichia coli RecO protein. A null allele of yqfI, when present in an otherwise Rec+ B. subtilis strain, causes cells to become highly sensitive to DNA-damaging agents, and plasmid transformation (intramolecular recombination) is reduced by 25-fold while chromosomal transformation (intermolecular recombination) is only moderately affected (2.5-fold reduction). Therefore, the yqfI gene was renamed recO and its null allele is referred to as recO1. The recO1 mutation was introduced into recombination-deficient strains representative of the epistatic groups α (recF, recR and recL strains), β (addA5 addB72), γ (recH342) and ? (recU40). The recO mutation did not affect the sensitivity of recF, recR or recL cells to DNA-damaging agents, increased the sensitivity of recU and addAB cells and abolished the DNA repair capacity of recH cells. The recO mutation did not affect intermolecular recombination in recF, recL, recH or recU cells, but reduced (by about 9-fold) the incidence of intermolecular recombination in addAB cells. The recO mutation did not affect intramolecular recombination in the addAB, recU, recF or recL cells, but reduced it by about 75-fold in recH cells. The defects caused by the recO1 mutation can be partially suppressed by a common suppressor of the recF, recL and recR phenotypes. We therefore assigned recO to epistatic group α and predict that the RecO protein acts at the same stage of recombination as the RecF, RecL and RecR proteins, in a RecFLOR complex.  相似文献   

5.
A gene regulatory network subcircuit comprising the otx, wnt8, and blimp1 genes accounts for a moving torus of gene expression that sweeps concentrically across the vegetal domain of the sea urchin embryo. Here we confirm by mutation the inputs into the blimp1cis-regulatory module predicted by network analysis. Its essential design feature is that it includes both activation and autorepression sites. The wnt8 gene is functionally linked into the subcircuit in that cells receiving this ligand generate a β-catenin/Tcf input required for blimp1 expression, while the wnt8 gene in turn requires a Blimp1 input. Their torus-like spatial expression patterns and gene regulatory analysis indicate that the genes even-skipped and hox11/13b are also entrained by this subcircuit. We verify the cis-regulatory inputs of even-skipped predicted by network analysis. These include activation by β-catenin/Tcf and Blimp1, repression within the torus by Hox11/13b, and repression outside the torus by Tcf in the absence of Wnt8 signal input. Thus even-skipped and hox11/13b, along with blimp1 and wnt8, are members of a cohort of torus genes with similar regulatory inputs and similar, though slightly out-of-phase, expression patterns, which reflect differences in cis-regulatory design.  相似文献   

6.
Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci.  相似文献   

7.
8.
The ANR1 MADS-box gene in Arabidopsis is a key gene involved in regulating lateral root development in response to the external nitrate supply. There are five ANR1-like genes in Oryza sativa, OsMADS23, OsMADS25, OsMADS27, OsMADS57 and OsMADS61, all of which belong to the AGL17 clade. Here we have investigated the responsiveness of these genes to fluctuations in nitrogen (N), phosphorus (P) and sulfur (S) mineral nutrient supply. The MADS-box genes have been shown to have a range of responses to the nutrient supply. The expression of OsMADS61 was transiently induced by N deprivation but was not affected by re-supply with various N sources. The expression of OsMADS25 and OsMADS27 was induced by re-supplying with NO3 and NH4NO3, but downregulated by NH4 +. The expression of OsMADS57 was significantly downregulated by N starvation and upregulated by 3 h NO3 re-supply. OsMADS23 was the only gene that showed no response to either N starvation nor NO3 re-supply. OsMADS57 was the only gene not regulated by P fluctuation whereas the expression of OsMADS23, OsMADS25 and OsMADS27 was downregulated by P starvation and P re-supply. In contrast, all five ANR1-related genes were significantly upregulated by S starvation. Our results also indicated that there were interactions among nitrate, sulphate and phosphate transporters in rice.  相似文献   

9.
10.
The recombination of two plasmids, pRDK101 and pACYC184, was examined in wild-type Escherichia coli and in various E. coli strains containing different recombination-deficient mutations. Recombination-induced oligomer formation from monomeric plasmids was found to be dependent on the functions of the recA, recB, recC and recFgenes. Intramolecular recombination of tetrameric plasmids to form lower-order oligomers and monomers also required the functions of the recA and recF genes but did not require the function of the recB and recC genes. In all cases where recA, recB, recC and recF mutations appeared to block the formation or reduction of plasmid circular oligomers, these effects could be reversed by the presence of an sbcA mutation.Further studies on recombination in vivo were carried out utilizing two tetracycline-sensitive derivatives of the compatible plasmids pACYC184 and pBR322. Recombination events between these two plasmids could be quantitated by measuring the production of tetracycline-resistant cells during the growth of transformants. Plasmid recombination was found to be reduced by recA and recF mutations, and the effect of these two mutations was reversed by the presence of an sbcA mutation. Plasmid recombination measured by this genetic assay was stimulated by recBrecC mutations, and electrophoretic analysis of the recombination products demonstrated that they were primarily circular monomers. A role for the recBrecC gene product, exonuclease V, in the resolution of recombination intermediates is discussed.  相似文献   

11.
Several cytochromes c2 from the Rhodospirillaceae show a pH dependence of redox potential in the physiological pH range which can be described by equations involving an ionisation in the oxidised form (pKo) and one in the reduced form (pKr). These cytochromes fall into one of two groups according to the degree of separation of pKo and pKr. In group A, represented here by the Rhodomicrobium vannielii cytochrome c2, the separation is approx. one pH unit and the ionisation is that of a haem propionic acid. Members of this group are unique among both cytochromes c2 and mitochondrial cytochromes c in lacking the conserved residue Arg-38. We propose that the role of Arg-38 is to lower the pK of the nearby propionic acid, so that it lies out of the physiological pH range. Substitution of this residue by an uncharged amino acid leads to a raised pK for the propionic acid. In group B, represented here by Rhodopseudomonas viridis cytochrome c2, the separation between pKo and pKr is approx. 0.4 pH unit and the ionisable group is a histidine at position 39. This was established by NMR spectroscopy and confirmed by chemical modification. Only a few other members of the cytochrome c2/mitochondrial cytochrome c family have a histidine at this position and of these, both Crithidia cytochrome c-557 and yeast cytochrome c were found to have a pH-dependent redox potential similar to that of Rps. viridis cytochrome c2. Using Coulomb's law, it was found that the energy required to separate pKo and pKr could be accounted for by simple electrostatic interactions between the haem iron and the ionisable group.  相似文献   

12.
To date, no information is available regarding the infection of camels (Camelus dromedarius) by Anaplasma ovis in North African region. Several animal species can be infected by A. ovis which further complicates its natural infection cycle. In this paper, we investigated the occurrence and the genetic diversity of A. ovis in camels and ticks collected from them in Tunisia and the risk factor analysis. Camel blood samples (n = 412) and tick (n = 300) samples, identified as Hyalomma dromedarii (n = 149, 49.6%), H. impeltatum (n = 142, 47.3%) and H. excavatum (n = 9, 3%), were analyzed by conventional PCR followed by the sequencing of msp4 and groEL genes. A. ovis DNA was identified in five camels (1.2%), but not in infesting ticks (0%). The microscopic examination revealed the specific infection of camel erythrocytes by Anaplasma inclusions. The msp4 and groEL typing confirmed the natural infection of camels by A. ovis and revealed two different msp4 genotypes earlier detected in Tunisian small ruminants and their infested ticks, and five different and novel groEL genetic variants forming a separately sub-cluster within A. ovis cluster. The occurrence of different A. ovis strains specific to camels associated with a low prevalence of this Anaplasma species in camels may enrich knowledge regarding the distribution and the transmission cycle of this bacterium in arid and Saharan areas of Tunisia.  相似文献   

13.
The stalked barnacle Oxynaspis gracilis, the chirostylid squat lobster Uroptychus sp., and the caridean shrimps Periclimenes cf. antipathophilus and Pseudopontonides principis have been collected at 68–124 m by a remotely operated vehicle (ROV) on banks in the northern Gulf of Mexico. These species inhabited six species of antipatharian hosts. Pseudopontonides principis, Oxynaspis gracilis, and Uroptychus sp. were not confined to a single host species. Except for Oxynaspis gracilis, collected by ROV in 2004–2005, these species have not been reported previously in the northwestern Gulf of Mexico.  相似文献   

14.
Wolbachia are extensively harbored by Bemisia tabaci (Gennadius) populations, which could induce reproductive alteration in the whitefly. Previous studies have indicated that Wolbachia in B. tabaci could be effectively eliminated by antibiotics. In the present study, the antibiotic tetracycline was used to remove Wolbachia from the B-biotype of B. tabaci, and its influences on the reproduction and development of the whitefly were investigated by biological crossing experiments. The results indicated that antibiotic treatment could induce almost complete unidirectional cytoplasmic incompatibility in B. tabaci populations. Specifically, the offspring sex ratio from the antibiotic-treated female × untreated male crossings was significantly male-biased. Moreover, the antibiotic cure also induced a developmental delay in the offspring of the whiteflies. However, molecular detection revealed that Wolbachia was not completely eliminated from the host whiteflies by tetracycline. Our data suggested that the reduction but not elimination of Wolbachia by antibiotic treatment could definitely alter the reproductive consequences and developmental process of the whitefly B. tabaci. This is the first report of unidirectional cytoplasmic incompatibility caused by Wolbachia in B. tabaci.  相似文献   

15.
E. coli B, filamented with 5-diazouracil (DZU)-2-14C, yielded ribonucleic acid (RNA)-(DZU-2-14C) which was converted by pancreatic ribonuclease to 14C-mono-and oligo-nucleotides. The mixed 14C-mononucleotides isolated by diethylaminoethyl-cellulose fractionation were identified as cytidylic, uridylic, and hydroxyuridylic acids, by using a combination of paper chromatography and treatment with alkaline phosphatase and cytidine deaminase. Rifampin blocked incorporation of DZU-2-14C under conditions which inhibit RNA synthesis. Division inhibition by DZU-2-14C and the incorporation into Escherichia coli B were retarded by uracil but not by other RNA bases. In a pyrimidine-requiring E. coli, DZU substituted for uracil or cytosine to an extent limited by toxic effects. Cytosine and uracil retarded these effects and retarded the incorporation of DZU-2-14C into the pyrimidineless strain. A small proportion of DZU-2-14C was converted by the latter strain into hydroxyuridylic acid, but the bulk of the incorporated label was in cytidylic and uridylic acid, as in the wild strain.  相似文献   

16.
Basal thermotolerance is very important for plant growth and development when plants are subjected to heat stress. However, little is known about the functional mechanism of gibberellins (GAs) in the basal thermotolerance of plants. In the present work, we provide molecular evidence that a member of the gene family encoding the GA-stimulated Arabidopsis (GASA) peptides, namely GASA5, is involved in the regulation of seedling thermotolerance. The GASA5-overexpressing plants displayed a weak thermotolerance, with a faster cotyledon-yellowing rate, lower seedling-survival rate, and slower hypocotyl elongation, in comparison to the wild-type and GASA5 null-mutant (gasa5-1) plants, after heat-stress treatment. The short-hypocotyl phenotype of GASA5-overexpressing plants could be rescued by the exogenous application of salicylic acid (SA), the hormone found to protect plants from heat stress-induced damage. GASA5 expression was inhibited by heat stress but unaffected by the application of exogenous SA. However, expression of the gene encoding the noexpresser of PR genes 1 (NPR1), a key component of the SA-signaling pathway, was downregulated by GASA5 overexpression. Importantly, when different GASA5-genotype plants were treated with heat stress, several genes encoding heat-shock proteins, including HSP101, HSP70B, HSP90.1, HSP17.6-C1, and HSP60, were inhibited by GASA5 overexpression. Meanwhile, hydrogen peroxide was accumulated at high levels in heat stress-treated GASA5-overexpressing plants. These results suggest that the Arabidopsis GASA5 gene acts as a negative regulator in thermotolerance by regulating both SA signaling and heat shock-protein accumulation.  相似文献   

17.
Daniel L. Hartl 《Genetics》1974,76(3):477-486
Two major loci in the Tftcn region of an SD chromosome have been separated by recombination and identified. The allele at the left-hand locus on an SD chromosome is called Sd; the allele at the right-hand locus is called Rsp. Both Sd and Rsp are necessary to bring about a distortion of the segregation ratio in heterozygous SD males, although the particular degree of distortion exhibited by an SD chromosome is influenced by the constellation of polygenic modifiers of SD in the genome. The coupling phase of the alleles, Sd Rsp/Sd+Rsp+, produces about 89-90% of Sd Resp-bearing progeny. The repulsion phase, Sd Rsp+/Sd+ Rsp, produces 10-20% of Sd Rsp+-bearing progeny. No coupling-repulsion effects between Sd and Rsp are apparent.  相似文献   

18.
19.
Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis.  相似文献   

20.
The isoenzyme composition of alpha-amylase is studied by polyacrylamide gel electrophoresis in Tris-glycine (pH 8.3) system in wheat cultivars with different genome composition. We show that durum wheat (Triticum durum, 2n = 4x = 28, BBAA) lacks the isoenzymes encoded by 6D and 7D chromosomes that are present in common wheat zymograms (Triticum aestivum, 2n = 6x = 42, BBAADD). A similar pattern is observed in a synthetic allohexaploid carrying the BBAA genomes of wheat and the H ch H ch genome of barley (Hordeum chilense). Our method of electrophoresis fails to reveal additional variants of alpha-amylase encoded by the barley genome, although C-banding analysis confirms the genomic structure BBAAH ch H ch of this allopolyploid. The electrophoretic spectrum of the spring common wheat cultivar Dobrynya with the wheat-Agropyron translocation 7DL-7AiL contains all of the alpha-amylase isoenzymes typical for common wheat (2n = 6x = 42, BBAADD) except for the zymotype encoded by the long arm of chromosome 7D. This observation confirms the results of cytogenetic analysis that identified a 7DL-7AiL translocation in this cultivar. No additional alpha-amylase isoenzymes encoded by Agropyron chromosome have been observed. Our data indicate that analysis of wheat-alien hybrids or introgressive forms should be carried out using a complex of different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号