首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Construction of the 3D structure of PfATP6 by homology modeling and docking simulation of artemisinin derivatives to this protein model are reported. Docking and consequent LUDI scores show good relation with in vitro antimalarial activities. The main binding source of artemisinins to the PfATP6 is hydrophobic interaction and biologically important peroxide bonds were exposed to outside of the binding pocket. This study suggests binding of artemisinin to PfATP6 precedes activation of peroxide bond by Fe(2+) species.  相似文献   

2.
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosa were tested in silico against the Plasmodium falciparum Ca2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.  相似文献   

3.
Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA‐binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6. Proteins 2015; 83:564–574. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

4.
The antimalarial drugs artemisinins have been described as inhibiting Ca2+-ATPase activity of PfATP6 (Plasmodium falciparum ATP6) after expression in Xenopus oocytes. Mutation of an amino acid residue in mammalian SERCA1 (Glu255) to the equivalent one predicted in PfATP6 (Leu) was reported to induce sensitivity to artemisinin in the oocyte system. However, in the present experiments, we found that artemisinin did not inhibit mammalian SERCA1a E255L either when expressed in COS cells or after purification of the mutant expressed in Saccharomyces cerevisiae. Moreover, we found that PfATP6 after expression and purification from S. cerevisiae was insensitive to artemisinin and significantly less sensitive to thapsigargin and 2,5-di(tert-butyl)-1,4-benzohydroquinone than rabbit SERCA1 but retained higher sensitivity to cyclopiazonic acid, another type of SERCA1 inhibitor. Although mammalian SERCA and purified PfATP6 appear to have different pharmacological profiles, their insensitivity to artemisinins suggests that the mechanism of action of this class of drugs on the calcium metabolism in the intact cell is complex and cannot be ascribed to direct inhibition of PfATP6. Furthermore, the successful purification of PfATP6 affords the opportunity to develop new antimalarials by screening for inhibitors against PfATP6.  相似文献   

5.
There are more than half a billion cases of malaria every year. Combinations of an artemisinin with other antimalarial drugs are now recommended treatments for Plasmodium falciparum malaria in most endemic areas. These treatment regimens act rapidly to relieve symptoms and effect cure. There is considerable controversy on how artemisinins work and over emerging indications of resistance to this class of antimalarial drugs. Several individual molecules have been proposed as targets for artemisinins, in addition to the idea that artemisinins might have many targets at the same time. Our suggestion that artemisinins inhibit the parasite-encoded sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) PfATP6 has gained support from recent observations that a polymorphism in the gene encoding PfATP6 is associated with in vitro resistance to artemether in field isolates of P. falciparum.  相似文献   

6.
7.
Plasmodium falciparum calcium-ATPase (PfATP6) has been reported to be a target of artemisinin and related endoperoxides. In this study, a series of previously reported guaianolide-endoperoxides (thaperoxides) were docked into a homology model of PfATP6 and also used to develop a pharmacophore model. This combined approach led to useful insights into the binding determinants of thaperoxides to the malarial enzyme. In addition, in silico mutagenesis and molecular dynamics suggested the importance of Phe264 and the electrostatic interactions between Lys260 in helix H3 and Lys1036 and Asp1038 in L6/7 loop for the binding of thaperoxides. These results could help in the design of more potent inhibitors of PfATP6.  相似文献   

8.
Artemisinins are the most important class of antimalarial drugs. They specifically inhibit PfATP6, a SERCA-type ATPase of Plasmodium falciparum. Here we show that a single amino acid in transmembrane segment 3 of SERCAs can determine susceptibility to artemisinin. An L263E replacement of a malarial by a mammalian residue abolishes inhibition by artemisinins. Introducing residues found in other Plasmodium spp. also modulates artemisinin sensitivity, suggesting that artemisinins interact with the thapsigargin-binding cleft of susceptible SERCAs.  相似文献   

9.
The antimalarial spiroindolones disrupt Plasmodium falciparum Na+ regulation and induce an alkalinization of the parasite cytosol. It has been proposed that they do so by inhibiting PfATP4, a parasite plasma membrane P‐type ATPase postulated to export Na+ and import H+ equivalents. Here, we screened the 400 antiplasmodial compounds of the open access ‘Malaria Box’ for their effects on parasite ion regulation. Twenty eight compounds affected parasite Na+ and pH regulation in a manner consistent with PfATP4 inhibition. Six of these, with chemically diverse structures, were selected for further analysis. All six showed reduced antiplasmodial activity against spiroindolone‐resistant parasites carrying mutations in pfatp4. We exposed parasites to incrementally increasing concentrations of two of the six compounds and in both cases obtained resistant parasites with mutations in pfatp4. The finding that diverse chemotypes have an apparently similar mechanism of action indicates that PfATP4 may be a significant Achilles' heel for the parasite.  相似文献   

10.
青蒿素类药物的作用机制:一个长久未决的基础研究挑战   总被引:1,自引:0,他引:1  
青蒿素是中国自主研制的抗疟良药,高效、低毒,许多基于青蒿素研发的衍生物具有良好的抗疟效果,近年来已成为抗疟的一线药物,受到世界医疗卫生界的充分肯定.虽然青蒿素结构奇特,抑疟效果显著,但40年来其生物作用机制之谜一直未被彻底破解.针对青蒿素类药物的作用机制,提出了不同的假说,如血红素参与青蒿素的激活并被烷基化从而起到抑疟作用,线粒体参与青蒿素的激活和作用过程,某些特定的蛋白是青蒿素作用靶点等.除抑疟外,青蒿素类药物在杀灭其他种类寄生虫、抑制某些癌症细胞以及抗病毒、治疗类风湿等方面也有一定作用.本文将对青蒿素类药物作用机制的研究进行综述及展望,包括抗疟疾过程中的药物激活、作用靶点以及简要的青蒿素抑制肿瘤细胞作用机制,以期为今后的研究提供帮助.  相似文献   

11.
The disease malaria, caused by the parasite Plasmodium falciparum, remains one of the most important causes of morbidity and mortality in sub-Saharan Africa. In the absence of an efficient vaccine, the medical treatment of malaria is dependent on the use of drugs. Since artemisinin is a powerful anti-malarial drug which has been proposed to target a particular Ca2+-ATPase (PfATP6) in the parasite, it has been important to characterize the molecular properties of this enzyme. PfATP6 is a 139?kDa protein composed of 1228 amino acids with a 39% overall identity with rabbit SERCA1a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a). PfATP6 conserves all sequences and motifs that are important for the function and/or structure of a SERCA, such as two high-affinity Ca2+-binding sites, a nucleotide-binding site and a phosphorylation site. We have been successful in isolating PfATP6 after heterologous expression in yeast and affinity chromatography in a pure, active and stable detergent-solubilized form. With this preparation, we have characterized and compared with the eukaryotic SERCA1a isoform the substrate (Ca2+ and ATP) -dependency for PfATP6 activity as well as the specific inhibition/interaction of the protein with drugs. Our data fully confirm that PfATP6 is a SERCA, but with a distinct pharmacological profile: compared with SERCA1a, it has a lower affinity for thapsigargin and much higher affinity for cyclopiazonic acid. On the other hand, we were not able to demonstrate any inhibition by artemisinin and were also not able to monitor any binding of the drug to the isolated enzyme. Thus it is unlikely that PfATP6 plays an important role as a target for artemisinin in the parasite P. falciparum.  相似文献   

12.
13.
Highlights? The intraerythrocytic malaria parasite extrudes Na+ via a Na+-ATPase ? Parasite Na+ homeostasis is disrupted by the antimalarial spiroindolones ? Mutations in PfATP4 confer resistance to Na+ disruption by the spiroindolones ? PfATP4 is postulated to be a Na+ efflux ATPase and a target of the spiroindolones  相似文献   

14.
15.
Recent studies have proposed curcumin as a potential partner for artemisinin in artemisinin combination therapies to treat malaria infections. The efficacy of curcumin alone and in combination with artemisinin was evaluated on a clone of Plasmodium chabaudi selected for artemisinin resistance in vivo. The addition of piperine as an enhancer of curcumin activity was also tested.Results indicated that curcumin, both alone and in combination with piperine had only a modest antimalarial effect and was not able to reverse the artemisinin-resistant phenotype or significantly affect growth of the tested clone when used in combination with artemisinin. This is in contrast with previous in vivo work and calls for further experimental evaluation of the antimalarial potential of curcumin.  相似文献   

16.
In this review we give an account of transport processes occurring at the membrane interface that separates the asexual stage of Plasmodium falciparum from its host, the infected erythrocyte, and also describe proteins whose activities may be important at this location. We explain the potential clinical value of such studies in the light of the current spread of parasite resistance to conventional antimalarial strategies. We discuss the uptake of substrates critical to the survival of the intracellular malaria parasite, and also the parasite's homeostatic and disposal mechanisms. The use of the Xenopus laevis expression system in the characterisation of a hexose transporter ("PfHT1") and a Ca(2+) ATPase ("PfATP4") of the parasite plasma membrane are described in detail.  相似文献   

17.
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA) which in some cell types play a pivotal role in agonist-induced increase in NADPH oxidase-derived \( {\text{O}}_{2}^{{ \cdot - }} \)production. Involvement of ADP ribosylation factor (Arf) in agonist-induced activation of PLD is known for smooth muscle cells of systemic arteries, but not in pulmonary artery smooth muscle cells (PASMCs). Additionally, role of cytohesin in this scenario is unknown in PASMCs. We, therefore, determined the involvement of Arf and cytohesin in U46619-induced stimulation of PLD in PASMCs, and the probable mechanism by which curcumin, a natural phenolic compound, inhibits the U46619 response. Treatment of PASMCs with U46619 stimulated PLD activity in the cell membrane, which was inhibited upon pretreatment with SQ29548 (Tp receptor antagonist), FIPI (PLD inhibitor), SecinH3 (inhibitor of cytohesins), and curcumin. Transfection of the cells with Tp, Arf-6, and cytohesin-1 siRNA inhibited U46619-induced activation of PLD. Upon treatment of the cells with U46619, Arf-6 and cytohesin-1 were translocated and associated in the cell membrane, which were not inhibited upon pretreatment of the cells with curcumin. Cytohesin-1 appeared to be necessary for in vitro binding of GTPγS with Arf-6; however, addition of curcumin inhibited binding of GTPγS with Arf-6 even in the presence of cytohesin-1. Our computational study suggests that although curcumin to some extent binds with Tp receptor, yet the inhibition of Arf6GDP to Arf6GTP conversion appeared to be an important mechanism by which curcumin inhibits U46619-induced increase in PLD activity in PASMCs.  相似文献   

18.
Development of new class of anti-malarial drugs is an essential requirement for the elimination of malaria. Bioactive components present in medicinal plants and their chemically modified derivatives could be a way forward towards the discovery of effective anti-malarial drugs. Herein, we describe a new class of compounds, 1,3-benzoxazine derivatives of pharmacologically active phytophenols eugenol (compound 3) and isoeugenol (compound 4) synthesised on the principles of green chemistry, as anti-malarials. Compound 4, showed highest anti-malarial activity with no cytotoxicity towards mammalian cells. Compound 4 induced alterations in the intracellular Na+ levels and mitochondrial depolarisation in intraerythrocytic Plasmodium falciparum leading to cell death. Knowing P-type cation ATPase PfATP4 is a regulator for sodium homeostasis, binding of compound 3, compound 4 and eugenol to PfATP4 was analysed by molecular docking studies. Compounds showed binding to the catalytic pocket of PfATP4, however compound 4 showed stronger binding due to the presence of propylene functionality, which corroborates its higher anti-malarial activity. Furthermore, anti-malarial half maximal effective concentration of compound 4 was reduced to 490?nM from 17.54?µM with nanomaterial graphene oxide. Altogether, this study presents anti-plasmodial potential of benzoxazine derivatives of phytophenols and establishes disruption of parasite sodium homeostasis as their mechanism of action.  相似文献   

19.
ABSTRACT: BACKGROUND: Polymorphisms within the PfATP6 gene have been indicated as potential molecular markers for artemisinin efficacy. Since 2004, the use of artemisinin combination therapy (ACT) was introduced as first-line treatment of the uncomplicated malaria cases in Suriname. The aim of this research was to determine changes in Suriname in the status of the polymorphic markers in the PfATP6 gene before and after the adoption of the ACT-regimen, particularly of the S769N mutation, which was reported to be associated with in vitro Artemether resistance in the neighboring country French Guiana. METHODS: The PfATP6 gene from Plasmodium falciparum parasites in Suriname was investigated in 28 samples using PCR amplification and restriction enzyme analysis, to assess and determine the prevalence of potentially interesting single nucleotide polymorphisms. The polymorphisms [L263E; A623E; S769N], which may be associated with the artemisinin resistant phenotype were characterized in parasites from three endemic regions before and after the adoption of the ACT-regimen. In addition, the status of these molecular markers was compared in paired P. falciparum isolates from patients with recurring malaria after controlled ACT. RESULTS: All the investigated samples exhibit the wild-type genotype at all three positions; L263, A623, S769. CONCLUSION: All investigated isolates before and after the adoption of the ACT-regimen and independent of endemic region harbored the wild-type genotype for the three investigated polymorphisms. The study revealed that decreased artemisinin susceptibility could occur independent from PfATP6 mutations, challenging the assumption that artemisinin resistance is associated with these mutations in the PfATP6 gene.  相似文献   

20.
We have obtained a full-length P type ATPase sequence (PfATP4) encoded by Plasmodium falciparum and expressed PfATP4 in Xenopus laevis oocytes to study its function. Comparison of the hitherto incomplete open reading frame with other Ca(2+)-ATPase sequences reveals that PfATP4 differs significantly from previously defined categories. The Ca(2+)-dependent ATPase activity of PfATP4 is stimulated by a much broader range of [Ca(2+)](free) (3.2-320 micrometer) than are an avian SERCA1 pump or rabbit SERCA 1a (maximal activity < 10 micrometer). The activity of PfATP4 is resistant to inhibition by ouabain (200 micrometer) or thapsigargin (0.8 micrometer) but is inhibited by vanadate (1 mM) or cyclopiazonic acid (1 microM). We used a quantitative polymerase chain reaction to assay expression of mRNA encoding PfATP4 relative to that for beta-tubulin in synchronized asexual stages and found variable expression throughout the life cycle with a maximal 5-fold increase in meronts compared with ring stages. This analysis suggests that PfATP4 defines a novel subclass of Ca(2+)-ATPases unique to apicomplexan organisms and therefore offers potential as a drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号