首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3878-3883
The kinetic parameters of the interaction of retinol with retinol binding protein (RBP) were studied. The rate constant for association of retinol with the protein (ka) was found to be 1.5 X 10(6) M-1 min-1. The rate constant for dissociation (kd) from the protein was determined by studying the transfer of retinol from RBP to lipid bilayers. It was found that such transfer proceeds via the aqueous phase and its rate-limiting step is the dissociation of retinol from the binding protein. The rate of transfer therefore represents the rate of dissociation. The kd was 0.112 min-1. These values were validated further by the following consideration. The equilibrium dissociation constant of RBP and retinol can be calculated from the expression Kd = kd/ka. The calculated value was 7.5 X 10(-8) M. Kd was also measured directly by fluorometric titration and was found to be 7 X 10(-8) M. The relative avidities of retinol for RBP, the complex RBP-transthyretin (RBP-TTR), and serum albumin were also studied. It was found that binding of RBP to TTR increased its avidity for retinol by about 2-fold. The avidity of albumin for retinol was 30-fold lower than that of RBP. The data imply that retinol spontaneously and rapidly dissociates from sites on binding proteins, which indicates that the vitamin can freely move in vivo between physiologic compartments with avidities for it.  相似文献   

3.
ABSTRACT: BACKGROUND: Polymorphisms within the PfATP6 gene have been indicated as potential molecular markers for artemisinin efficacy. Since 2004, the use of artemisinin combination therapy (ACT) was introduced as first-line treatment of the uncomplicated malaria cases in Suriname. The aim of this research was to determine changes in Suriname in the status of the polymorphic markers in the PfATP6 gene before and after the adoption of the ACT-regimen, particularly of the S769N mutation, which was reported to be associated with in vitro Artemether resistance in the neighboring country French Guiana. METHODS: The PfATP6 gene from Plasmodium falciparum parasites in Suriname was investigated in 28 samples using PCR amplification and restriction enzyme analysis, to assess and determine the prevalence of potentially interesting single nucleotide polymorphisms. The polymorphisms [L263E; A623E; S769N], which may be associated with the artemisinin resistant phenotype were characterized in parasites from three endemic regions before and after the adoption of the ACT-regimen. In addition, the status of these molecular markers was compared in paired P. falciparum isolates from patients with recurring malaria after controlled ACT. RESULTS: All the investigated samples exhibit the wild-type genotype at all three positions; L263, A623, S769. CONCLUSION: All investigated isolates before and after the adoption of the ACT-regimen and independent of endemic region harbored the wild-type genotype for the three investigated polymorphisms. The study revealed that decreased artemisinin susceptibility could occur independent from PfATP6 mutations, challenging the assumption that artemisinin resistance is associated with these mutations in the PfATP6 gene.  相似文献   

4.
5.
Kwiek JJ  Haystead TA  Rudolph J 《Biochemistry》2004,43(15):4538-4547
Quinone oxidoreductase 2 (QR2) purified from human red blood cells was recently shown to be a potential target of the quinoline antimalarial compounds [Graves et al., (2002) Mol. Pharmacol. 62, 1364]. QR2 catalyzes the two-electron reduction of menadione via the oxidation of N-alkylated or N-ribosylated nicotinamides. To investigate the mechanism and consequences of inhibition of QR2 by the quinolines further, we have used steady-state and transient-state kinetics to define the mechanism of QR2. Importantly, we have shown that QR2 when isolated from an overproducing strain of E. coli is kinetically equivalent to the enzyme from the native human red blood cell source. We observe ping-pong kinetics consistent with one substrate/inhibitor binding site that shows selectivity for the oxidation state of the FAD cofactor, suggesting that selective inhibition of the liver versus red blood cell forms of malaria may be possible. The reductant N-methyldihydronicotinamide and the inhibitor primaquine bind exclusively to the oxidized enzyme. In contrast, the inhibitors quinacrine and chloroquine bind exclusively to the reduced enzyme. The quinone substrate menadione, on the other hand, binds nonspecifically to both forms of the enzyme. Single-turnover kinetics of the reductive half-reaction are chemically and kinetically competent and confirm the inhibitor selectivity seen in the steady-state experiments. Our studies shed light on the possible in vivo potency of the quinolines and provide a foundation for future studies aimed at creating more potent QR2 inhibitors and at understanding the physiological significance of QR2.  相似文献   

6.
The synthesis, purification as a tetrafluoroborate salt and structural elucidation of the verdohemochrome 2a derived from the coupled oxidation of octaethylhemochrome 1 is described. Based on elemental analyses, spectroscopic studies (visible and infrared absorption, 1H-NMR) and fast atom bombardment mass spectrometry, the assignment of the iron(II) oxaporphyrin structure for the verdohemochrome 2a and the blue monocarbonyl species 2b, obtained upon treatment of 2a with carbon monoxide, has been accomplished. This assignment raises a number of questions regarding the iron oxidation state of intermediates in the pathway of heme catabolism both in vitro and in vivo. Furthermore, the implications of the occurrence of an iron oxaporphyrin intermediate in the pathway of heme metabolism, which is suggested by the similarity of the visible absorption spectrum of the CO species 2b with that of a new intermediate recently observed in the heme oxygenase-catalyzed degradition of heme and mesoheme, is considered.  相似文献   

7.
8.
9.
A series of novel monocarbonyl analogues of curcumin have been designed, synthesized and tested for their activity against Molt4, HeLa, PC3, DU145 and KB cancer cell lines. Six of the analogues showed potent cytotoxicity towards these cell lines with IC50 values below 1 μM, which is better than doxorubicin, a US FDA approved drug. Several analogues were also found to be active against both CQ-resistant (W2 clone) and CQ-sensitive (D6) strains of Plasmodium falciparum in an in-vitro antimalarial screening. This level of activity warrants further investigation of the compounds for development as anticancer and antimalarial agents.  相似文献   

10.
Africa carries the greatest burden of disease caused by Plasmodium falciparum, and we can expect this burden to rise in the near future, mainly because of drug resistance. Although effective drugs are available (such as artemether-lumefantrine, mefloquine, atovaquone-proguanil and halofantrine) they are uniformly too expensive for routine use. Affordable options include chloroquine plus sulfadoxine-pyrimethamine (SP), amodiaquine (alone or in combination with SP) and chlorproguanil-dapsone. Artemisinin combination therapy may offer considerable advantages over alternative therapies, but its introduction faces considerable logistic difficulty.  相似文献   

11.
12.
J Granot  A Rotman 《Biochemistry》1978,17(12):2370-2374
6-Hydroxydopamine (I) is a well-known neurocytotoxic agent which has become an important tool in many neurochemical studies in recent years. Biochemical investigations of the mechanism of action of 6-hydroxydopamine indicated that this amine binds covalently and irreversibly to proteins. In the present work, molecular properties of 6-hydroxydopamine in aqueous solution such as self-association, ionization, intramolecular conformations, and possible cyclization were investigated using 1H nuclear magnetic resonance spectroscopy. A model study for the interaction of 6-hydroxydopamine with proteins was undertaken by using SH-containing molecules: cysteine, glutathione, and bovine serum albumin. The binding of these compounds to 6-hydroxydopamine was found to cause labilization of the hydrogen attached to C2 of the amine aromatic ring. This effect was interpreted in terms of nucleophilic attack of RS- on C1 of 6-hydroxydopamine. A proposed model for neurocytotoxicity is discussed.  相似文献   

13.
14.
Enzymes from the pentose phosphate pathway (PPP) are potential drug targets for the development of new drugs against Trypanosoma brucei, the causative agent of African sleeping disease: for instance, the 6-phosphogluconate dehydrogenase is currently studied actively for such purposes. Structural and functional studies are necessary to better characterize the associated enzymes and compare them to their human homologues, in order to undertake structure-based drug design studies on such targets. In this context, the crystal structure of 6-phosphogluconolactonase (6PGL) from T. brucei, the second enzyme from PPP, was determined at 2.1 Angstroms resolution. Comparison of its sequence and structure to other related proteins in the 6PGL family with a known structure (Thermotoga maritima Tm6GPL 1PBT and Vibrio cholerae Vc6PGL (1Y89), which have not been discussed in print), or in the glucosamine-6-phosphate-deaminase family (hexameric Escherichia coli 1DEA and monomeric Bacillus subtilis 2BKV), allowed the identification of the 6PGL active site. In addition to the analysis of the crystal structure, 3D NMR interaction studies and docking experiments are reported here. Key residues involved in substrate binding or in catalysis were identified.  相似文献   

15.
We develop a workload model based on the observed behavior of parallel computers at the San Diego Supercomputer Center and the Cornell Theory Center. This model gives us insight into the performance of strategies for scheduling moldable jobs on space-sharing parallel computers. We find that Adaptive Static Partitioning (ASP), which has been reported to work well for other workloads, does not perform as well as strategies that adapt better to system load. The best of the strategies we consider is one that explicitly reduces allocations when load is high (a variation of Sevcik's (1989) A+ strategy). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We analyzed the mechanisms of a soil nitrogen (N) sub-model, which is a subroutine of the Crop-Environment Resources Synthesis (CERES)-maize; a model which was originally designed to simulate crop yield and has been calibrated and validated in Taiwan. Some experiments designed specifically for testing the N sub-model proved the capability of the model in reflecting field observations. With the mechanisms, we could write computer programs for calculating the relative sensitivities of major parameters in the model, and for simulating different treatments of organic matter. The purposes were to find how they affected N transformations, especially the processes of denitrification, which are considered to be responsible for N losses in upland soils and are an important environmental issue related to human disturbance of the N cycle. The results implied that soil water content and temperature were, respectively, the first and second dominant factors. They were much more sensitive than any other parameters, such as the decomposition rate coefficients, soil pH and bulk density. Decomposition of organic matter could slow down if organic matter with different carbon/nitrogen (C/N) ratios were treated in fractions. This treatment could also decrease the process of denitrification unless the organic matter was extremely large in quantity and has a high C/N ratio.  相似文献   

17.
Plasmodium falciparum calcium-ATPase (PfATP6) has been reported to be a target of artemisinin and related endoperoxides. In this study, a series of previously reported guaianolide-endoperoxides (thaperoxides) were docked into a homology model of PfATP6 and also used to develop a pharmacophore model. This combined approach led to useful insights into the binding determinants of thaperoxides to the malarial enzyme. In addition, in silico mutagenesis and molecular dynamics suggested the importance of Phe264 and the electrostatic interactions between Lys260 in helix H3 and Lys1036 and Asp1038 in L6/7 loop for the binding of thaperoxides. These results could help in the design of more potent inhibitors of PfATP6.  相似文献   

18.
Experimental data were combined with computational methods in constructing a hypothetical three-dimensional model for the blue single copper protein Rhus stellacyanin (St). The known sequence of stellacyanin and its homology with plastocyanin (Pc) were used together with the results of spectroscopic studies of the protein that yielded the current assignment of two histidines, one cysteine and a disulfide sulfur as copper ligands in stellacyanin. By computer graphics and energy minimization the folding of the protein was predicted. The model structure is somewhat less regular than Pc as judged by surface area and energy comparisons, but it is a stable structure. Besides rotation of one imidazole ring the copper site undergoes no change even in the absence of the copper ion and the model shows that the site can be constructed with the four assumed copper ligands without forming a strained system. The structure also indicates that a carbonyl oxygen atom is near the copper, thus the site may have analogy to the Alcaligenes denitrificans azurin (Az) site, although the amino acid sequence is more homologous to that of Pc. The model indicates that aspartate 49, reductively labeled by Cr(III), is near the copper center and homologous to the site labeled by Cr(III) on Pc. Also homologous to Pc is a tyrosine residue adjacent to the aspartate. This tyrosine has been implicated in Pc electron transfer and thus is probably involved in electron transfer reactivity of St as well. The higher reactivity of St with small-molecule redox reagents compared to Az and Pc, may be due to the proximity of the above-mentioned aspartate 49 to the Cu, or the greater exposure of one of the Cu cysteine ligands, in the predicted structure as compared to that in the known Pc and Az structures.  相似文献   

19.
Asiatic acid (AsA), a naturally occurring pentacyclictriterpenoid found in Centella asiatica, plays a major role in neuroprotection, anticancer, antioxidant, and hepatoprotective activities. Human serum albumin (HSA), a blood plasma protein, participates in the regulation of plasma osmotic pressure and transports endogenous and exogenous substances. The study undertaken to analyze the drug-binding mechanisms of HSA is crucial in understanding the bioavailability of drugs. In this study, we analyzed the cytotoxic activity of AsA on HepG2 (human hepatocellular carcinoma) cell lines and its binding, conformational, docking, molecular simulation studies with HSA under physiological pH 7.2. These studies revealed a clear decrease in the viability of HepG2 cells upon exposure to AsA in a dose-dependent manner with an IC50 of 45?μM. Further studies showed the quenching of intrinsic fluorescence of HSA by AsA with a binding constant of KAsA?=?3.86?±?0.01?×?104?M?1, which corresponds to the free energy of (ΔG) ?6.3?kcal?M?1 at 25?°C. Circular dichroism (CD) studies revealed that there is a clear decrease in the α-helical content from 57.50?±?2.4 to 50%?±?2.3 and an increase in the β-turns from 25?±?0.65 to 29%?±?0.91 and random coils from 17.5%?±?0.95 to 21%?±?1.2, suggesting partial unfolding of HSA. Autodock studies revealed that the AsA is bound to the subdomain IIA with hydrophobic and hydrophilic interactions. From molecular dynamics, simulation data (RMSD, Rg and RMSF) emphasized the local conformational changes and rigidity of the residues of both HSA and HSA–AsA complexes.  相似文献   

20.
The active site cleft of the HIV-1 protease (PR) is bound by two identical conformationally mobile loops known as flaps, which are important for substrate binding and catalysis. The present article reports, for the first time, an HIV-1 PR inhibitor, ATBI, from an extremophilic Bacillus sp. The inhibitor is found to be a hydrophilic peptide with Mr of 1147, and an amino acid sequence of Ala-Gly-Lys-Lys-Asp-Asp-Asp-Asp-Pro-Pro-Glu. Sequence homology exhibited no similarity with the reported peptidic inhibitors of HIV-1 PR. Investigation of the kinetics of the enzyme-inhibitor interactions revealed that ATBI is a noncompetitive and tight binding inhibitor with the IC(50) and K(i) values 18.0 and 17.8 nm, respectively. The binding of the inhibitor with the enzyme and the subsequent induction of the localized conformational changes in the flap region of the HIV-1 PR were monitored by exploiting the intrinsic fluorescence of the surface exposed Trp-42 residues, which are present at the proximity of the flaps. We have demonstrated by fluorescence and circular dichroism studies that ATBI binds in the active site of the HIV-1 PR and thereby leads to the inactivation of the enzyme. Based on our results, we propose that the inactivation is due to the reorganization of the flaps impairing its flexibility leading toward inaccessibility of the substrate to the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号