首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Epinephrine (Epi) acts as a neurotransmitter in the brain, but its function therein is not well understood. Phenylethanolamine N-methyltransferase (PNMT) catalyzes the final step in the biosynthesis of Epi and is thus a pharmacological target to investigate the function of Epi in the central nervous system. The kinetic differences between bovine adrenal PNMT and human brain PNMT for a number of substrates and inhibitors are examined and the results reported.  相似文献   

2.
Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we demonstrate that a routinely used assay for screening PNMT inhibitors is not appropriate for those inhibitors having K(i) values less than 1 microM. A revised assay has been developed that shows some inhibitors bind two orders of magnitude more tightly than previously reported.  相似文献   

3.
In order to determine the function of epinephrine (Epi) in the central nervous system, we have targeted the enzyme that catalyzes the final step in the biosynthesis of Epi, phenylethanolamine N-methyltransferase (PNMT; EC 2.1.1.28). 1,2,3,4-Tetrahydroisoquinolines (THIQs) are inhibitors of this enzyme, but also display affinity for the alpha2-adrenoceptor. To gain further understanding about how THIQs bind at the PNMT active site and in an attempt to further increase the selectivity of THIQ-type inhibitors versus the alpha2-adrenoceptor, a series of cis- and trans-1,3-dimethyl-7-substituted-THIQs were synthesized. Evaluation of these compounds suggests that THIQs bind in two different orientations at the PNMT active site, based on the lipophilicity of the 7-substituent. However, no significant increases in selectivity versus the alpha2-adrenoceptor were observed for these compounds.  相似文献   

4.
Epinephrine (Epi), which initiates short-term responses to cope with stress, is, in part, stress-regulated via genetic control of its biosynthetic enzyme, phenylethanolamine N-methyltransferase (PNMT). In rats, immobilization (IMMO) stress activates the PNMT gene in the adrenal medulla via Egr-1 and Sp1 induction. Yet, elevated Epi induced by acute and chronic stress is associated with stress induced, chronic illnesses of cardiovascular, immune, cancerous, and behavioral etiologies. Major sources of Epi include the adrenal medulla and brainstem. Although catecholamines do not cross the blood-brain barrier, circulating Epi from the adrenal medulla may communicate with the central nervous system and stress circuitry by activating vagal nerve β-adrenergic receptors to release norepinephrine, which could then stimulate release of the same from the nucleus tractus solitarius and locus coeruleus. In turn, the basal lateral amygdala (BLA) may activate to stimulate afferents to the hypothalamus, neocortex, hippocampus, caudate nucleus, and other brain regions sequentially. Recently, we have shown that repeated IMMO or force swim stress may evoke stress resiliency, as suggested by changes in expression and extinction of fear memory in the fear-potentiated startle paradigm. However, concomitant adrenergic changes seem stressor dependent. Present studies aim to identify stressful conditions that elicit stress resiliency versus stress sensitivity, with the goal of developing a model to investigate the potential role of Epi in stress-associated illness. If chronic Epi over expression does elicit illness, possibilities for alternative therapeutics exist through regulating stress-induced Epi expression, adrenergic receptor function and/or corticosteroid effects on Epi, adrenergic receptors and the stress axis.  相似文献   

5.
During embryogenesis of the rat the enzymes tryosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH) are first detected by immunocytochemistry or biochemical assay on the 16th day of gestation (E 16). It is not until E 18 that the enzyme phenylethanolamine-N-methyltransferase (PNMT), which is required for biosynthesis of adrenaline, can be detected cytochemically or biochemically. In this study we sought to determine whether the delayed appearance of PNMT is consequent to invasion of the adrenal medulla by E 18 of cells destined to express PNMT, cues provided by the ingrowing splachnic nerves or the action of corticosterone (CS) secreted by the adrenal cortical anlage, a hormone which regulates PNMT in adult rats. When adrenal glands are removed on E 16 and placed in culture, PNMT cannot be detected cyto- or biochemically until 2 days later (E 16 + 2). While CS levels increase 100-fold in vivo between E 16 and E 18, the surge of CS is not necessary for expression of PNMT since (a) adrenals removed on E 16 and cultured in the absence of exogenous ACTH fail to increase CS yet still express PNMT and (b) addition of CS (10?5M) to the cultures on E 16 does not alter the time of appearance of the enzyme. CS, on the other hand, increases the amount of PNMT protein and activity 3-fold with respect to control at all time points, without any effect on TH. We conclude that (a) it is the cells already present in the adrenal medulla at E 16 which differentiate to express PNMT; (b) the initial expression of PNMT is not controlled by nerves nor by corticosteroids; and (c) corticosteroids have a selective action on regulating the amount of PNMT, once it is expressed, but not TH enzyme protein. It remains to be determined whether the differentiation of PNMT is elicited by genetic or epigenetic signals.  相似文献   

6.
Differentiation of the noradrenergic and adrenergic phenotypes was documented in rat embryonic adrenal chromaffin cells in vivo from 12.5 days of gestation (E12.5) to term. The initial appearance of three enzymes in the catecholaminergic pathway, tyrosine hydroxylase (T-OH), dopamine-β-hydroxylase (DBH), and phenylethanolamine-N-methyltransferase (PNMT) as well as endogenous catecholamines (CA), was followed by immunohistochemistry and histofluorescence. T-OH and DBH, were employed as indices of noradrenergic expression, whereas PNMT, the epinephrine-synthesizing enzyme, was used as an index of adrenergic expression. At E12.5, T-OH, DBH, and CA were present in cells of the sympathetic ganglia at the level of the adrenal anlage. By 13.5 days, cells containing T-OH, DBH, and CA, were observed between the sympathetic ganglia and developing adrenal, and within the adrenal itself. While T-OH, DBH, and CA were present in adrenal medullary cells from the earliest stages of adrenal development, PNMT, in contrast, was undetectable in ganglion primordia, migrating cells, or within the adrenal before 17 days. PNMT initially appeared at E17 in small clusters of cells scattered throughout the adrenal. The number of cells containing PNMT and the intensity of staining increased dramatically from E17 to term.A number of experimental manipulations were employed in vivo to investigate the role of glucocorticoids in differentiation of the adrenergic phenotype. Chronic or acute treatment of mothers and/or embryos with various glucocorticoids, adrenocorticotrophic hormone (ACTH), or S-adenosylmethionine (SAM) did not result in precocious appearance of PNMT. Moreover, the initial expression of PNMT was not prevented or delayed by embryonic hypophysectomy or by treatment with inhibitors of adrenocortical function. Consequently, the initial expression of PNMT on E17.0 is not dependent on normal glucocorticoid levels, cannot be induced prematurely by glucocorticoids, and is independent of the pituitary-adrenal axis. However, the ontogenetic increase in PNMT levels after initial expression has occurred does require intact pituitary-adrenal function. Our observations suggest that different mechanisms regulate initial expression and subsequent modulation of neurotransmitter phenotype.  相似文献   

7.
For the first-aid treatment of anaphylaxis, epinephrine (Epi) 0.3 mg intramuscular (IM) injection in the thigh is the drug of choice. Epi auto-injectors are widely recommended for anaphylaxis treatment in community settings but not necessarily carried or used as prescribed when anaphylaxis occurs. We therefore developed rapidly disintegrating sublingual tablets (RDSTs) as an alternative noninvasive dosage form. Our objective in this study was to evaluate the effect of reducing Epi particle size on its in vitro and ex vivo diffusion, with the goal of enhancing Epi sublingual absorption from Epi RDSTs. Epi particle size was reduced by top-bottom technique using a microfluidizer for one pass at 30,000 Psi. The micronized Epi crystals (Epi-MC) were characterized using Zetasizer, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Epi RDSTs were formulated and manufactured using our previously developed method. In vitro and ex vivo diffusion of Epi 10, 20, and 40 mg RDSTs and Epi-MC 10 and 20 mg RDSTs (n = 4) were evaluated using Franz cells. Epi 10 mg solution was used as a control. Mean (±standard deviation (SD)) Epi particle size was successfully reduced from 131.8 ± 10.5 to 2.5 ± 0.4 μm. Cumulative Epi diffused and influx from 40 mg Epi RDSTs and 20 mg Epi-MC RDSTs were not significantly different from each other in vitro and ex vivo (p > 0.05). Also, Epi permeability from 20 mg Epi-MC RDSTs was significantly higher than from the rest (p < 0.05). Epi-MC RDSTs improved Epi diffusion twofold and might have the potential to reduce the Epi dose needed in RDSTs by 50%.KEY WORDS: adrenaline, anaphylaxis, diffusion, epinephrine, sublingual  相似文献   

8.
Although the use of (neo-)adjuvant chemotherapy in breast cancer patients has resulted in improved outcome, not all patients benefit equally. We have evaluated the utility of an in vitro chemosensitivity assay in predicting response to neoadjuvant chemotherapy. Pre-therapeutic biopsies were obtained from 30 breast cancer patients assigned to neoadjuvant epirubicin 75 mg/m2 and docetaxel 75 mg/m2 (Epi/Doc) in a prospectively randomized clinical trial. Biopsies were subjected to a standardized ATP-based Epi/Doc chemosensitivity assay, and to gene expression profiling. Patients then received 3 cycles of chemotherapy, and response was evaluated by changes in tumor diameter and Ki67 expression. The efficacy of Epi/Doc in vitro was correlated with differential changes in tumor cell proliferation in response to Epi/Doc in vivo (p = 0.0011; r = 0.73670, Spearmańs rho), but did not predict for changes in tumor size. While a pre-therapeutic gene expression signature identified tumors with a clinical response to Epi/Doc, no such signature could be found for tumors that responded to Epi/Doc in vitro, or tumors in which Epi/Doc exerted an antiproliferative effect in vivo. This is the first prospective clinical trial to demonstrate the utility of a standardized in vitro chemosensitivity assay in predicting the individual biological response to chemotherapy in breast cancer.  相似文献   

9.
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the conversion of norepinephrine (noradrenaline) to epinephrine (adrenaline) while, concomitantly, S-adenosyl-l-methionine (AdoMet) is converted to S-adenosyl-l-homocysteine. This reaction represents the terminal step in catecholamine biosynthesis and inhibitors of PNMT have been investigated, inter alia, as potential antihypertensive agents. At various times the kinetic mechanism of PNMT has been reported to operate by a random mechanism, an ordered mechanism in which norepinephrine binds first, and an ordered mechanism in which AdoMet binds first. Here we report the results of initial velocity studies on human PNMT in the absence and presence of product and dead end inhibitors. These, coupled with isothermal titration calorimetry and fluorescence binding experiments, clearly shown that hPNMT operates by an ordered sequential mechanism in which AdoMet binds first. Although the log V pH-profile was not well defined, plots of log V/K versus pH for AdoMet and phenylethanolamine, as well as the pKi versus pH for the inhibitor, SK&F 29661, were all bell-shaped indicating that a protonated and an unprotonated group are required for catalysis.  相似文献   

10.
This study focuses on the development of a new clinical vaccine candidate (AdOprF.RGD.Epi8) against Pseudomonas aeruginosa using an E1 E3 adenovirus (Ad) vector expressing OprF (AdOprF.RGD.Epi8) and modifications of the Ad genome providing two capsid changes: (i) modification of the Ad hexon gene to incorporate an immune-dominant OprF epitope (Epi8) into loop 1 of the hexon, enabling repeat administration to boost the anti-OprF immune response, and (ii) modification of the fiber gene to incorporate an integrin-binding RGD sequence to enhance gene delivery to antigen-presenting cells. Western analysis confirmed that AdOprF.RGD.Epi8 expresses OprF, contains Epi8 in the hexon protein, and enhances gene transfer to dendritic cells compared to AdOprF, a comparable Ad vector expressing OprF with an unmodified capsid. Intramuscular immunization of C57BL/6 mice with AdOprF.RGD.Epi8 resulted in the generation of anti-OprF antibodies at comparable levels to those induced following immunization with AdOprF, but immunization with AdOprF.RGD.Epi8 was associated with increased CD4 and CD8 gamma interferon T-cell responses against OprF as well as increased survival against lethal pulmonary challenge with agar-encapsulated P. aeruginosa. Importantly, repeat administration of AdOprF.RGD.Epi8 resulted in boosting of the humoral anti-OprF response as well as increased protection, whereas no boosting could be achieved with repeat administration of AdOprF. This suggests that the capsid-modified AdOprF.RGD.Epi8 vector is a more effective immunogen compared to a comparable wild-type Ad capsid, making it a good candidate for an anti-P. aeruginosa vaccine.  相似文献   

11.
A modification of the conventional dopamine β-hydroxylase (DBH) (EC 1.14.2.1) assay is accomplished by the inclusion of adenosylhomocysteinase (EC 3.3.1.1.) and adenosine deaminase (EC 3.5.4.4.) into the phenylethanolamine N-methyltransferase (PNMT) (EC 2.1.1.) medium used to estimate octopamine. S-adenosylhomocysteine, (SAH), the second product of PNMT formed during the methylation of octopamine, is found to inhibit PNMT. The addition of adenosylhomocysteinase and adenosine deaminase removes SAH from the medium and increases the accuracy of DBH assay system.  相似文献   

12.
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.  相似文献   

13.
To potentially identify proteins that interact (i.e. bind) and may contribute to mediate (?)-epicatechin (Epi) responses in endothelial cells we implemented the following strategy: 1) synthesis of novel Epi derivatives amenable to affinity column use, 2) in silico molecular docking studies of the novel derivatives on G protein-coupled estrogen receptor (GPER), 3) biological assessment of the derivatives on NO production, 4) implementation of an immobilized Epi derivative affinity column and, 5) affinity column based isolation of Epi interacting proteins from endothelial cell protein extracts. For these purposes, the Epi phenol and C3 hydroxyl groups were chemically modified with propargyl or mesyl groups. Docking studies of the novel Epi derivatives on GPER conformers at 14?ns and 70?ns demostrated favorable thermodynamic interactions reaching the binding site. Cultures of bovine coronary artery endothelial cells (BCAEC) treated with Epi derivatives stimulated NO production via Ser1179 phosphorylation of eNOS, effects that were attenuated by the use of the GPER blocker, G15. Epi derivative affinity columns yielded multiple proteins from BCAEC. Proteins were electrophoretically separated and inmmunoblotting analysis revealed GPER as an Epi derivative binding protein. Altogether, these results validate the proposed strategy to potentially isolate and identify novel Epi receptors that may account for its biological activity.  相似文献   

14.
The epithelial-derived, type II transmembrane serine protease matriptase, the mouse homologue of which is epithin, has been shown to be involved in epidermal differentiation, hair formation, and thymus function. We show in this study that epithin/matriptase (Epi/MTP) plays a significant role in mammary epithelial cell growth and morphogenesis. Epi/MTP is expressed at low level in the mouse mammary epithelium of young animals and it accumulates at the terminal end-bud of the growing ducts. The level of Epi/MTP is elevated in the mammary glands at stages when epithelial proliferation and modeling occur. It is primarily present in the luminal epithelial cells of mouse mammary ducts and lobules. Using an ex vivo three-dimensional culture system for mammary epithelial functional assays, we show that mammary epithelial growth and morphogenesis in the presence of the latent form hepatocyte growth factor (pro-HGF) are blocked either by an inhibitor of the Epi/MTP protease activity or by siRNA knockdown of the Epi/MTP expression. These studies demonstrate that Epi/MTP participates in mammary epithelial growth and modeling through activation of pro-HGF. Our findings reveal an important pathway in normal mammary epithelial morphogenesis which may participate in breast cancer progression.  相似文献   

15.
Pheochromocytoma (PHEO) and paraganglioma (PGL) are catecholamine-producing neuroendocrine tumors that arise respectively inside or outside the adrenal medulla. Several reports have shown that adrenal glucocorticoids (GC) play an important regulatory role on the genes encoding the main enzymes involved in catecholamine (CAT) synthesis i.e. tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). To assess the influence of tumor location on CAT metabolism, 66 tissue samples (53 PHEO, 13 PGL) and 73 plasma samples (50 PHEO, 23 PGL) were studied. Western blot and qPCR were performed for TH, DBH and PNMT expression. We found a significantly lower intra-tumoral concentration of CAT and metanephrines (MNs) in PGL along with a downregulation of TH and PNMT at both mRNA and protein level compared with PHEO. However, when PHEO were partitioned into noradrenergic (NorAd) and mixed tumors based on an intra-tumoral CAT ratio (NE/E >90%), PGL and NorAd PHEO sustained similar TH, DBH and PNMT gene and protein expression. CAT concentration and composition were also similar between NorAd PHEO and PGL, excluding the use of CAT or MNs to discriminate between PGL and PHEO on the basis of biochemical tests. We observed an increase of TH mRNA concentration without correlation with TH protein expression in primary cell culture of PHEO and PGL incubated with dexamethasone during 24 hours; no changes were monitored for PNMT and DBH at both mRNA and protein level in PHEO and PGL. Altogether, these results indicate that long term CAT synthesis is not driven by the close environment where the tumor develops and suggest that GC alone is not sufficient to regulate CAT synthesis pathway in PHEO/PGL.  相似文献   

16.
Abstract: Chromaffin cells were isolated from bovine adrenal glands and fractionated into two distinct subpopulations by density gradient centrifugation on Percoll. Cells in the more dense fraction stored epinephrine (E) as their predominant catecholamine (81% of total catecholamines), contained high levels of phenylethanolamine N-methyltransferase (PNMT) activity, and exhibited intense PNMT immunoreactivity. This population of chromaffin cells was termed the E-rich cell population. Cells in the less dense fraction, the norepinephrine (NE)-rich cell population, stored predominantly NE (75% of total catecholamines). Although the NE-rich cells had only 3% as much PNMT activity as did the E-rich cells, 20% of the NE-rich cells were PNMT immunoreactive. This suggested that the PNMT-positive cells in the NE-rich cell cultures contained less PNMT per cell than did E-rich cells and may not be typical adrenergic cells. The regulation of PNMT mRNA levels and PNMT activity in primary cultures of E-rich and NE-rich cells was compared. At the time the cells were isolated, PNMT mRNA levels in NE-rich cells were ~20% of those in E-rich cells; within 48 h in culture, PNMT mRNA in both populations declined to almost undetectable levels. Treatment with dexamethasone increased PNMT mRNA levels and PNMT activity in both populations. In E-rich cells, dexamethasone restored PNMT mRNA to the level seen in freshly isolated cells and increased PNMT activity twofold. In NE-rich cells, dexamethasone increased PNMT mRNA to levels twice those found in freshly isolated cells and increased PNMT activity sixfold. Cycloheximide blocked the effects of dexamethasone on PNMT mRNA expression in NE-rich cells but had little effect in E-rich cells. Angiotensin II, forskolin, and phorbol 12,13-dibutyrate elicited large increases in PNMT mRNA levels in E-rich cells but had no effect in NE-rich cells. Our data suggest that PNMT expression is regulated differently in the two chromaffin cell subpopulations.  相似文献   

17.
To determine whether similar mechanisms regulate adrenergic phenotypic expression in different cellular populations, the superior cervical sympathetic ganglion (SCG) and extra-adrenal chromaffin tissue were studied in the fetal and neonatal rat; results were compared to those previously obtained with the adrenal medulla. Phenylethanolamine N-methyltransferase (PNMT), the enzyme which converts norepinephrine to epinephrine, was used as an index of adrenergic expression. PNMT catalytic activity was initially detectable in the SCG of normal, untreated fetuses at 17.0 days of gestation (E17.0), and increased three- to fourfold until postnatal day 2. Thereafter activity decreased precipitously, and was undetectable 2 weeks after birth. Immunohistochemical studies, using specific antisera to PNMT, were employed to localize the enzyme. Immunoreactivity (PNMT-IR) was undetectable in sympathetic ganglia of control animals, suggesting that this method is less sensitive than the catalytic assay. Following glucocorticoid treatment, cells heavily stained for PNMT-IR were observed in paravertebral sympathetic ganglia, including the SCG, and in the organ of Zuckerkandl. In the SCG, PNMT-IR was present in small cells presumed to be small, intensely fluorescent (SIF) cells and was never observed in principal ganglion neurons. The increase in PNMT-IR after steroid treatment was strikingly age dependent: initiation of treatment at progressively older ages during the first week of life resulted in fewer and fewer PNMT-IR cells. No response was apparent after 1 week. Moreover, treatment of pregnant rats was associated with appearance of PNMT-IR at E18.5, but not at E16.5. After treatment from days 0 to 6 of life, PNMT-IR gradually disappeared. However, retreatment on days 24–30 caused the reappearance of PNMT-IR, suggesting that exposure to steroids at birth causes (a) an immediate increase in PNMT-IR and (b) responsiveness to steroids during adulthood. Consequently, the disappearance of PNMT-IR after exposure to steroids at birth, is not simply due to death of SIF cells. We conclude that proximity to the adrenal cortex is not necessary for initial expression of PNMT. More generally, the expression of PNMT by ganglion SIF cells parallels that in adrenal chromaffin cells since initial expression was not dependent on high local concentrations of glucocorticoids, whereas subsequent development did require high levels of the hormones. Our observations suggest that similar mechanisms regulate expression and development of the adrenergic phenotype in adrenal and sympathetic ganglia.  相似文献   

18.
The activities of the adrenal enzymes tyrosine hydroxylase (TH) and phenylethanolamine-N-methyltransferase (PNMT) were found to be elevated when mice were subjected to 4°C ambient temperature. Only a single hr of cold exposure is required to achieve increased activity, provided that the measurements are made 12 hr after the cold exposure is initiated. After the cold stress is terminated, PNMT activity remain elevated for 12 hr. TH demonstrates a biphasic response to cold exposure, as the enzyme activity shows a second increase 12 hr after the stress has ended. The data indicates that short periods of stress result in demonstrated biochemical changes that persist long after the stress has ended.  相似文献   

19.
2,3,4,5-Tetrahydro-1H-2-benzazepine (THBA; 1) is nearly 100-fold more selective an inhibitor of phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) versus the alpha2-adrenoceptor than is 1,2,3,4-tetrahydroisoquinoline (THIQ; 2) (1: PNMT K(i)= 3.3 microM, alpha2-adrenoceptor K(i) = 11 microM, selectivity [alpha2 K(i)/PNMT K(i)] = 3.3; 2: PNMT K(i) = 9.7 microM, alpha2 K(i) = 0.35 microM, selectivity=0.036;). Since the PNMT inhibitory activity and selectivity of THIQ were enhanced by the introduction of a hydrophilic electron-withdrawing 7-substituent and a 3-alkyl-substituent, a similar study was conducted on THBA. 8-Nitro-THBA (3) was found to be as potent an inhibitor of PNMT as its THIQ analogue (21) and to be more selective due to its reduced alpha2-adrenoceptor affinity (3: PNMT K(i) = 0.39 microM, alpha2 K(i) = 66 microM, selectivity = 170; 21: PNMT K(i) = 0.41 microM, alpha2 K(i) = 4.3 microM, selectivity = 10). Introduction of a 3-alkyl substituent on the THBA nucleus decreased both the alpha2-adrenoceptor affinity and the PNMT inhibitory activity, suggesting an area of steric bulk intolerance at both sites. 4-Hydroxy-THBA (15), which can be considered a conformationally-restricted analogue of 3-hydroxymethyl-THIQ (30), exhibited poorer PNMT inhibitory activity and less selectivity than 30 (15: PNMT K(i) = 58 microM, alpha2 K(i) = 100 microM, selectivity = 1.7; 30: PNMT K(i) = 1.1 microM, alpha2 K(i) = 6.6 microM, selectivity = 6.0). While the addition of an 8-nitro group to 15 increased the selectivity of 16 as compared to its THIQ analogue (31), it was not as potent at PNMT nor as selective as 8-nitro-THBA (3) (16, PNMT K(i) = 5.3 microM, alpha2 K(i) = 680 microM, selectivity = 130; 31: PNMT K(i) = 0.29 microM, alpha2 K(i) = 19 microM, selectivity = 66). Compound 3 is the most selective (PNMT/alpha2) and one of the more potent at PNMT compounds yet reported in the benzazepine series, and should have sufficient lipophilicity to penetrate the blood-brain barrier (CLogP = 1.8).  相似文献   

20.
A procedure has been developed for the purification of phenylethanolamine-Nmethyl transferase (PNMT) (EC 2.1.1) from adrenal glands of rats. Ninety percent of the enzyme activity was in the 105,000g supernatant fraction. After chromatography on Sephadex G-150 and DEAE-cellulose, the PNMT showed two molecular species but the same specific activity on polyacrylamide gel electrophoresis. The final product was enriched nearly 100-fold. The methylation reaction is linear with increasing enzyme concentration, and the enzyme pH optimum was 8.0. The enzyme is relatively stable at 40 °C, but activity is partially destroyed by incubation at 60 °C. Several substrates were tested: octopamine, norepinephrine, tyramine, phenylethanolamine. Greatest affinity was for octopamine. All these substrates and the methyl group donor, S-adenosylmethionine, were inhibitory at high concentrations. Preincubation of the enzyme with norepinephrine accelerated the initial rate of the methylation reaction, while preincubation with S-adenosylmethionine had no such effect. A specific antibody against this purified enzyme was prepared. This antibody inhibited the enzyme activity and also precipitated it. Various immunological studies using this antibody are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号