共查询到20条相似文献,搜索用时 8 毫秒
1.
Shearwin-Whyatt L Baliga B Doumanis J Kumar S 《Biochemical and biophysical research communications》2001,282(5):1114-1119
Cellular defects which prevent apoptotic cell death can result in the generation of hyperproliferative disorders and can prevent the effective treatment of such diseases. The majority of cellular defects which result in apoptosis resistance lie upstream of caspase activation. We have described chimeric caspase molecules consisting of the prodomain of caspase-2 fused to the amino terminus of caspase-3, and which are tagged at the carboxyl terminus with green fluorescent protein (GFP) to allow direct visualisation of transfected cells. Here we show that these chimeric caspase molecules possess potent, rapid cell-killing activity in cell lines which display a range of defects resulting in apoptosis resistance. 相似文献
2.
Lucas Anissian Michael Kirby 《Biochemical and biophysical research communications》2009,390(3):410-414
The presence of neuropeptides and neuroreceptors in the bone have been reported in several studies. Bone turn-over seems to be controlled by the nervous system. The actual pathway or the control mechanism is still under investigation. In this study we investigate the changes in osteoblast cells if they are in co-culture with primary cortical brain cells. After seven days in co-culture with the primary fetal brain cells the osteoblast cells exhibited hypertrophic morphological changes and showed stronger ALP activity. 相似文献
3.
Faria M Spiller DG Dubertret C Nelson JS White MR Scherman D Hélène C Giovannangeli C 《Nature biotechnology》2001,19(1):40-44
Antisense oligonucleotides are designed to specifically hybridize to a target messenger RNA (mRNA) and interfere with the synthesis of the encoded protein. Uniformly modified oligonucleotides containing N3'-P5' phosphoramidate linkages exhibit (NP) extremely high-affinity binding to single-stranded RNA, do not induce RNase H activity, and are resistant to cellular nucleases. In the present work, we demonstrate that phosphoramidate oligonucleotides are effective at inhibiting gene expression at the mRNA level, by binding to their complementary target present in the 5'-untranslated region. Their mechanism of action was demonstrated by comparative analysis of three expression systems that differ only by the composition of the oligonucleotide target sequence (HIV-1 polypurine tract or PPT sequence) present just upstream from the AUG codon of the firefly luciferase reporter gene: the experiments have been done on isolated cells using oligonucleotide delivery mediated by cationic molecules or streptolysin O (SLO), and in vivo by oligonucleotide electrotransfer to skeletal muscle. In our experimental system phosphoramidate oligonucleotides act as potent and specific antisense agents by steric blocking of translation initiation; they may prove useful to modulate RNA metabolism while maintaining RNA integrity. 相似文献
4.
David PulitiDavid Warther Clelia OrangeAlexandre Specht Maurice Goeldner 《Bioorganic & medicinal chemistry》2011,19(3):1023-1029
The search for chemical probes which allow a controlled fluorescence activation in living cells represent a major challenge in chemical biology. To be useful, such probes have to be specifically targeted to cellular proteins allowing thereof the analysis of dynamic aspects of this protein in its cellular environment. The present paper describes different methods which have been developed to control cellular fluorescence activation emphasizing the photochemical activation methods known to be orthogonal to most cellular components and, in addition, allowing a spatio-temporal controlled triggering of the fluorescent signal. 相似文献
5.
《Molecular simulation》2013,39(6):434-447
Density functional theory (DFT; B3LYP) and Hartree–Fock (HF; 3-21G, 6-31G(d) and 6-311G(d,p)) calculations with complete geometry optimisations are carried out in the ground state on five 6-aminoquinolone derivatives, which have been proved to be highly effective in inhibiting HIV replication, to study their structures, energetics and HOMO–LUMO correlation with physiological action. The gas-phase calculations and single-point polarisable continuum model water-phase calculations show that the molecules are highly effective in inhibiting HIV replication, which is in excellent agreement with the experiment. Structural features, energies, charge densities and HOMO–LUMO correlation have been found to substantiate the experimental findings. Compound 4 (pyrazine) shows some special features in DFT calculations which are not found in HF calculations. In the present series, HF results are more reliable as expected. 相似文献
6.
Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells 总被引:19,自引:0,他引:19
Cultured microvascular endothelial cells isolated from rat epididymal fat pads produce glycosaminoglycans that accelerate thrombin-antithrombin complex formation. The heparinlike nature of these macromolecules was established by complete destruction of their anticoagulant activity employing purified Flavobacterium heparinase. Only 15% of the biologic activity of these complex carbohydrates was expressed when the heparin binding domain on the protease inhibitor was chemically modified at the Trp 49 residue. The anticoagulantly active species contains disaccharides which constitute the unique antithrombin binding region of the mucopolysaccharide. Removal of the biologically active heparinlike components from endothelial cells with 0.05% trypsin suggests that these molecular species are present on the cell surface. 相似文献
7.
8.
9.
10.
Oliveira CJ Sá-Nunes A Francischetti IM Carregaro V Anatriello E Silva JS Santos IK Ribeiro JM Ferreira BR 《The Journal of biological chemistry》2011,286(13):10960-10969
Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-α while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of ~110 pmol/μl) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) ~100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle. 相似文献
11.
Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis
Pignolo RJ Suda RK McMillan EA Shen J Lee SH Choi Y Wright AC Johnson FB 《Aging cell》2008,7(1):23-31
Osteoporosis and the associated risk of fracture are major clinical challenges in the elderly. Telomeres shorten with age in most human tissues, including bone, and because telomere shortening is a cause of cellular replicative senescence or apoptosis in cultured cells, including mesenchymal stem cells (MSCs) and osteoblasts, it is hypothesized that telomere shortening contributes to the aging of bone. Osteoporosis is common in the Werner (Wrn) and dyskeratosis congenita premature aging syndromes, which are characterized by telomere dysfunction. One of the targets of the Wrn helicase is telomeric DNA, but the long telomeres and abundant telomerase in mice minimize the need for Wrn at telomeres, and thus Wrn knockout mice are relatively healthy. In a model of accelerated aging that combines the Wrn mutation with the shortened telomeres of telomerase (Terc) knockout mice, synthetic defects in proliferative tissues result. Here, we demonstrate that deficiencies in Wrn−/– Terc−/– mutant mice cause a low bone mass phenotype, and that age-related osteoporosis is the result of impaired osteoblast differentiation in the context of intact osteoclast differentiation. Further, MSCs from single and Wrn−/– Terc−/– double mutant mice have a reduced in vitro lifespan and display impaired osteogenic potential concomitant with characteristics of premature senescence. These data provide evidence that replicative aging of osteoblast precursors is an important mechanism of senile osteoporosis. 相似文献
12.
Evanko D 《Nature methods》2006,3(5):336
Stuart Schreiber and colleagues show how small molecule sensitivities can be used to probe the natural genetic variation present in populations of organisms. 相似文献
13.
A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9) and normal age-matched control (n = 18) mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17%) and connectivity density (33%), and significantly smaller trabecular spacing (-6%) and structural model index (-11%). These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism. 相似文献
14.
15.
Botulinum neurotoxin type B is a high-weight (150 kDa) protein produced by the anaerobic bacillus Clostridium botulinum. This metallo-protease neurotoxin cleaves synaptobrevin, a protein, which is crucial to neurotransmission, resulting in the muscle paralysis, which characterizes botulism. Inhibition of the metallo-peptidase activity is a possible approach to obtain specific therapeutics to treat botulism. We have previously reported a successful attempt to block the proteolytic activity of this neurotoxin with new, selective amino-thiol inhibitors endowed with Ki values in the 15-20 nanomolar range. With the aim of increasing the affinity and bioavailability of this first series of inhibitors we have optimized the residue that fits the P(1) subsite of the enzyme by comparing a series of ligands that contain subtle but significant variants of the parent structure. In addition, this strategy provided a simplification of the synthesis of BoNT/B inhibitors by reducing the possible number of stereoisomers. As such we were able to enhance the inhibitory potency whilst reducing the size as compared to the initial privileged structure yielding the first pseudo-tripeptide inhibitors with Ki values in the low nanomolar range. 相似文献
16.
Human induced pluripotent stem (hiPS) cells have potential uses for drug discovery and cell therapy, including generation of pancreatic β-cells for diabetes research and treatment. In this study, we developed a simple protocol for generating insulin-producing cells from hiPS cells. Treatment with activin A and a GSK3β inhibitor enhanced efficient endodermal differentiation, and then combined treatment with retinoic acid, a bone morphogenic protein inhibitor, and a transforming growth factor-β (TGF-β) inhibitor induced efficient differentiation of pancreatic progenitor cells from definitive endoderm. Expression of the pancreatic progenitor markers PDX1 and NGN3 was significantly increased at this step and most cells were positive for anti-PDX1 antibody. Moreover, several compounds, including forskolin, dexamethasone, and a TGF-β inhibitor, were found to induce the differentiation of insulin-producing cells from pancreatic progenitor cells. By combined treatment with these compounds, more than 10% of the cells became insulin positive. The differentiated cells secreted human c-peptide in response to various insulin secretagogues. In addition, all five hiPS cell lines that we examined showed efficient differentiation into insulin-producing cells with this protocol. 相似文献
17.
In this Opinion, we compare and contrast small molecules and RNAi. We discuss the advantages and disadvantages of both technologies focusing on timing, specificity, dose and therapeutic use. 相似文献
18.
Summary Interactions of cationic dye methylene blue with small polyanions like inositol hexasulfate, adenosine-triphosphate, ammonium molybdate, potassium ferro- and ferricyanide have been studied spectrophotometrically and conductometrically to ascertain the chromotropic characters of these polyanions. Results show that while almost all of them bind the dye stoichiometrically, none of them except ammonium molybdate is a chromotrope in the sense in which heparin, chondroitin sulfate etc. are. Inositol hexasulfate induces an intermediate spectra, though not perfectly metachromatic as is the case with inositol hexaphosphate. It is concluded that a chromotrope need not be a macromolecule to induce metachromasia in a dye solution, but the minimum number of charges per polyanion to give it a chromotropic character will vary with the nature of the polyanion.University Research Scholar. 相似文献
19.
20.
Charlotte Schou Erik R. Ottosen Hans Jørgen Petersen Fredrik Björkling Scilla Latini Pernille V. Hjarnaa Erik Bramm Lise Binderup 《Bioorganic & medicinal chemistry letters》1997,7(24):616-3100
4-Pyridyl cyanoguanidines with hydrophobic aromatic side chains showed potent antiproliferative activity in the human breast and lung cancer cell lines MCF-7, NYH and H460. In vivo, treatment with N-(6-chlorophenoxyhexyl)-N′-cyano-N″-4-pyridylguanidine (18, 20 mg/kg/day po.), gave a complete remission of tumours in a model of NYH inoculated nude mice. 相似文献