首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) have been validated as good drug targets for a large variety of diseases. Trypanosoma brucei PDEB1 (TbrPDEB1) has been designated as a promising drug target for the treatment of human African trypanosomiasis. Recently, the first class of selective nanomolar TbrPDEB1 inhibitors was obtained by targeting the parasite specific P-pocket. However, these biphenyl-substituted tetrahydrophthalazinone-based inhibitors did not show potent cellular activity against Trypanosoma brucei (T. brucei) parasites, leaving room for further optimization. Herein, we report the discovery of a new class of potent TbrPDEB1 inhibitors that display improved activities against T. brucei parasites. Exploring different linkers between the reported tetrahydrophthalazinone core scaffold and the amide tail group resulted in the discovery of alkynamide phthalazinones as new TbrPDEB1 inhibitors, which exhibit submicromolar activities versus T. brucei parasites and no cytotoxicity to human MRC-5 cells. Elucidation of the crystal structure of alkynamide 8b (NPD-048) bound to the catalytic domain of TbrPDEB1 shows a bidentate interaction with the key-residue Gln874 and good directionality towards the P-pocket. Incubation of trypanosomes with alkynamide 8b results in an increase of intracellular cAMP, validating a PDE-mediated effect in vitro and providing a new interesting compound series for further studies towards selective TbrPDEB1 inhibitors with potent phenotypic activity.  相似文献   

2.
Sterols are an essential class of lipids in eukaryotes, where they serve as structural components of membranes and play important roles as signaling molecules. Sterols are also of high pharmacological significance: cholesterol-lowering drugs are blockbusters in human health, and inhibitors of ergosterol biosynthesis are widely used as antifungals. Inhibitors of ergosterol synthesis are also being developed for Chagas’s disease, caused by Trypanosoma cruzi. Here we develop an in silico pipeline to globally evaluate sterol metabolism and perform comparative genomics. We generate a library of hidden Markov model-based profiles for 42 sterol biosynthetic enzymes, which allows expressing the genomic makeup of a given species as a numerical vector. Hierarchical clustering of these vectors functionally groups eukaryote proteomes and reveals convergent evolution, in particular metabolic reduction in obligate endoparasites. We experimentally explore sterol metabolism by testing a set of sterol biosynthesis inhibitors against trypanosomatids, Plasmodium falciparum, Giardia, and mammalian cells, and by quantifying the expression levels of sterol biosynthetic genes during the different life stages of T. cruzi and Trypanosoma brucei. The phenotypic data correlate with genomic makeup for simvastatin, which showed activity against trypanosomatids. Other findings, such as the activity of terbinafine against Giardia, are not in agreement with the genotypic profile.  相似文献   

3.
We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania N-myristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors.  相似文献   

4.
N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc3Man9GlcNAc2-PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.  相似文献   

5.
Inhibitors against Trypanosoma brucei phosphodiesterase B1 (TbrPDEB1) and B2 (TbrPDEB2) have gained interest as new treatments for human African trypanosomiasis. The recently reported alkynamide tetrahydrophthalazinones, which show submicromolar activities against TbrPDEB1 and anti-T. brucei activity, have been used as starting point for the discovery of new TbrPDEB1 inhibitors. Structure-based design indicated that the alkynamide-nitrogen atom can be readily decorated, leading to the discovery of 37, a potent TbrPDEB1 inhibitor with submicromolar activities against T. brucei parasites. Furthermore, 37 is more potent against TbrPDEB1 than hPDE4 and shows no cytotoxicity on human MRC-5 cells. The crystal structures of the catalytic domain of TbrPDEB1 co-crystalized with several different alkynamides show a bidentate interaction with key-residue Gln874, but no interaction with the parasite-specific P-pocket, despite being (uniquely) a more potent inhibitor for the parasite PDE. Incubation of blood stream form trypanosomes by 37 increases intracellular cAMP levels and results in the distortion of the cell cycle and cell death, validating phosphodiesterase inhibition as mode of action.  相似文献   

6.
RNA editing regulates mitochondrial gene expression in trypanosomatid pathogens by creating functional mRNAs. It is catalyzed by a multi-protein complex (the editosome), and is found to be essential in both insect stage and mammalian blood stream form of Trypanosoma brucei. This particular form of RNA editing is unique to trypanosomatids, and thus provides a suitable drug target in trypanosomatid pathogens. Here, we demonstrate the feasibility of a rapid and sensitive fluorescence-based reporter assay to monitor RNA editing based on ribozyme activity. We could validate our new assay using previously identified inhibitors against the essential RNA editing ligase. The principle advantages of this assay are: (i) the use of non-radioactively labeled materials, (ii) sensitivity afforded by fluorescence instrumentation applicable to high-throughput screening of chemical inhibitors against the essential editosome and (iii) a rapid and convenient ‘mix and measure’ type of assay in low volume with a high signal to noise ratio. This assay should enhance rapid identification and characterization of the editosome inhibitors primarily based on the overall composition of the editosomes from T. brucei. These inhibitors could also be tested against the editosomes from the closely related pathogens including T. cruzi and Leishmania species.  相似文献   

7.
Abstract

Mannosylphosphodolichol synthase (DPMS) plays a critical role in Glc3Man9GlcNAc2-PP-Dol (lipid-linked oligosaccha-ride, LLO) biosynthesis, an essential intermediate in asparagine-linked (N-linked) protein glycosylation. We observed earlier that phosphorylation of DPMS increases the catalytic activity of the enzyme by increasing the Vmax as well as the enzyme turnover (kcat) without significantly changing the Km for GDP-mannose. As a result, LLO biosynthesis, turnover and protein N-glycosylation are increased. This is manifested in increased proliferation of capillary endothelial cells, i.e. angiogenesis. We have then asked, if the phosphorylation event or the upregulation of DPMS due to overproduction of the enzyme is the key factor in upregulating angiogenesis? This question has been answered by isolating a stable capillary endothelial cell clone overexpressing the gene encoding DPMS. Our results indicate that the DPMS-overexpressing clone has a high level of DPMS mRNA as judged by QRT-PCR. The clone also expresses nearly four times more DPMS protein than the clone transfected with pEGFP-N1 vector only (i.e. control) as analyzed by Western blotting. Most importantly, the overexpressing DPMS clone has ~108% higher DPMS activity than the vector control. Immunofluorescence microscopy with Texas Red-conjugated wheat germ agglutinin indicates a high level of expression of (GlcNAc-β-(1,4)-GlcNAc) 1-4-β-GlcNAc-NeuAc glycans on the external surface of the capillary endothelial cells overexpressing DPMS. Increased cellular proliferation and accelerated healing of the wound induced by mechanical stress of the DPMS-overexpressing clone unequivocally supports a role of DPMS in angiogenesis.  相似文献   

8.
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.  相似文献   

9.
Mannosylphospho dolichol synthase (DPMS) is a critical enzyme in the biosynthesis of lipid-linked oligosaccharide (LLO; Glc3Man9GlcNAc2-PP-Dol), a pre-requisite for asparagine-linked (N-linked) protein glycosylation. We have shown earlier that DPMS is important for angiogenesis, i.e., endothelial cell proliferation. This is true when cAMP is used for intracellular signaling. During cAMP signaling, DPMS is activated and ER stress is reduced. To understand the activation of DPMS at the molecular level we have isolated a cDNA clone for the DPMS gene (bDPMS) from the capillary endothelial cells of bovine adrenal medulla. DNA sequencing and the deduced amino acid sequence have established that bDPMS has a motif to be phosphorylated by cAMP-dependent protein kinase (PKA). Based on the sequence information Serine 165 has been found to be the phosphorylation target in bDPMS. Hydropathy Index when plotted against amino acid number indicates the presence of a hydrophobic region around the amino acid residues 120–160, supporting that bDPMS has one membrane spanning region. The recombinant bDPMS has now been purified as His-tag protein with an apparent molecular weight of M r 33 kDa. Additionally, we show here that overexpression of DPMS is indeed angiogenic. The capillary endothelial cells proliferate at a higher rate carrying the DPMS overexpression plasmid over the parental cells or the vector.  相似文献   

10.
A series of halo-nitrobenzamide were synthesized and evaluated for their ability to block proliferation of Trypanosoma brucei brucei. A number of these compounds had significant activity against the parasite, particularly 2-chloro-N-(4-chlorophenyl)-5-nitrobenzamide 17 which exhibited low micromolar inhibitory potency against T. brucei and selectivity towards both malaria and mammalian cells.  相似文献   

11.
A series of glutathione derivatives 14, modified at the N,S and/or COOH sites, with in vitro antitrypanosomal activity were tested against bloodstream form Trypanosoma brucei 247 wild type and a T. b. brucei 247 strain over-expressing the multiple drug resistance protein (MRPA) by 50–100x to assess the susceptibility of these compounds to resistance by the TbMRP protein. Of the compounds tested, only compound 1 inhibited both bloodstream form T. brucei and T. bruceiMRPA, with a resistance factor of 1.4, indicating it to be an inhibitor of this protein and proteins acting in synergy with the transporter, whilst 2 & 3 and its derivatives showed reduced inhibitory activity against T. bruceiMRPA, indicating them to be substrates and susceptible to resistance.  相似文献   

12.

Objectives

There is an urgent need to develop a safe, effective, orally active, and inexpensive therapy for African trypanosomiasis due to the drawbacks of current drugs. Selective tubulin inhibitors have the potential to be promising drug candidates for the treatment of this disease, which is based on the tubulin protein structural difference between mammalian and trypanosome cells. We propose to identify novel tubulin inhibitors from a compound library developed based on the lead compounds that selectively target trypanosomiasis.

Methods

We used Trypanosoma brucei brucei as the parasite model, and human normal kidney cells and mouse microphage cells as the host model. Growth rates of both trypanosomes and mammalian cells were determined as a means to screen compounds that selectively inhibit the proliferation of parasites. Furthermore, we examined the cell cycle profile of the parasite and compared tubulin polymerization dynamics before and after the treatment using identified compounds. Last, in vivo anti-parasite activities of these compounds were determined in T. brucei-infected mice.

Results

Three compounds were selected that are 100 fold more effective against the growth of T. brucei cells than mammalian cells. These compounds caused cell cycle progression defects in T. brucei cells. Western analyses indicated that these compounds decreased tubulin polymerization in T. brucei cells. The in vivo investigation revealed that these compounds, when admitted orally, inhibited T. brucei cell proliferation in mouse blood. However, they were not potent enough to clear up the infection completely.

Conclusions

These compounds are promising lead compounds as orally active agents for drug development of anti-trypanosome agents. A more detail structure activity relationship (SAR) was summarized that will be used to guide future lead optimization to improve the selectivity and potency of the current compounds.  相似文献   

13.
A series of alkanediamide-linked bisbenzamidines was synthesized and tested in vitro against a drug-sensitive strain of Trypanosoma brucei brucei, a drug-resistant strain of Trypanosoma brucei rhodesiense and Pneumocystis carinii. Bisbenzamidines linked with longer alkanediamide chains were potent inhibitors of both strains of T. brucei. However, bisbenzamidines linked with shorter alkanediamide chains were the most potent compounds against P. carinii. N,N′-Bis[4-(aminoiminomethyl)phenyl] hexanediamide, 4 displayed potent inhibition (IC50 = 2–3 nM) against T. brucei and P. carinii, and was non-cytotoxic in the A549 human lung carcinoma cell line. The inhibitory bioactivity was significantly reduced when the amidine groups in 4 were moved from the para to the meta positions or replaced with amides.  相似文献   

14.
Trypanosoma brucei is the causing agent of African trypanosomiasis. These parasites possess a unique thiol redox system required for DNA synthesis and defense against oxidative stress. It includes trypanothione and trypanothione reductase (TryR) instead of the thioredoxin and glutaredoxin systems of mammalian hosts. Here, we show that the benzisothiazolone compound ebsulfur (EbS), a sulfur analogue of ebselen, is a potent inhibitor of T. brucei growth with a favorable selectivity index over mammalian cells. EbS inhibited the TryR activity and decreased non-protein thiol levels in cultured parasites. The inhibition of TryR by EbS was irreversible and NADPH-dependent. EbS formed a complex with TryR and caused oxidation and inactivation of the enzyme. EbS was more toxic for T. brucei than for Trypanosoma cruzi, probably due to lower levels of TryR and trypanothione in T. brucei. Furthermore, inhibition of TryR produced high intracellular reactive oxygen species. Hydrogen peroxide, known to be constitutively high in T. brucei, enhanced the EbS inhibition of TryR. The elevation of reactive oxygen species production in parasites caused by EbS induced a programmed cell death. Soluble EbS analogues were synthesized and cured T. brucei brucei infection in mice when used together with nifurtimox. Altogether, EbS and EbS analogues disrupt the trypanothione system, hampering the defense against oxidative stress. Thus, EbS is a promising lead for development of drugs against African trypanosomiasis.  相似文献   

15.
The eukaryotic protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis. Polyamine biosynthesis is essential in T. brucei, and the polyamine spermidine is required for synthesis of a novel cofactor called trypanothione and for deoxyhypusine modification of eukaryotic translation initiation factor 5A (eIF5A). eIF5A promotes translation of proteins containing polyprolyl tracts in mammals and yeast. To evaluate the function of eIF5A in T. brucei, we used RNA interference (RNAi) to knock down eIF5A levels and found that it is essential for T. brucei growth. The RNAi-induced growth defect was complemented by expression of wild-type human eIF5A but not by a Lys-50 mutant that blocks modification by deoxyhypusine. Bioinformatics analysis showed that 15% of the T. brucei proteome contains 3 or more consecutive prolines and that actin-related proteins and cysteine proteases were highly enriched in the group. Steady-state protein levels of representative proteins containing 9 consecutive prolines that are involved in actin assembly (formin and CAP/Srv2p) were significantly reduced by knockdown of eIF5A. Several T. brucei polyprolyl proteins are involved in flagellar assembly. Knockdown of TbeIF5A led to abnormal cell morphologies and detached flagella, suggesting that eIF5A is important for translation of proteins needed for these processes. Potential specialized functions for eIF5A in T. brucei in translation of variable surface glycoproteins were also uncovered. Inhibitors of deoxyhypusination would be expected to cause a pleomorphic effect on multiple cell processes, suggesting that deoxyhypusine/hypusine biosynthesis could be a promising drug target in not just T. brucei but in other eukaryotic pathogens.  相似文献   

16.

Background

The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay.

Methodology/Principal Findings

Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics.

Conclusions/Significance

The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.  相似文献   

17.
In 2014, a published report of the high-throughput screen of >42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery.  相似文献   

18.
A series of compounds containing 2-substituted imidazoles has been synthesized from imidazole and tested for its biological activity against human African trypanosomiasis (HAT). The 2-substituted 5-nitroimidazoles such as fexinidazole (7a) and 1-[4-(1-methyl-5-nitro-1H-imidazol-2-ylmethoxy)-pyridin-2-yl-piperazine (9e) exhibited potent activity against T. brucei in vitro with low cytotoxicity and good solubility. The presence of the NO2 group at the 5-position of the imidazole ring in 2-substituted imidazoles is the crucial factor to inhibit T. brucei.  相似文献   

19.
Three nitroimidazole compounds were tested for trypanocidal activity against early (3-day) T. brucei TREU 667 infections. Compound 1 (1-methyl-2-carbamoyl-oxy-methyl-5-nitroimidazole) at both 5 and 20 mg/kg given as four daily doses was ineffective, while Compound 2 (3-(1-methyl-5-nitroimidazole-2-yl)-3α, 4,5,6,7, 7α-hexahydro-1, 2-benz-isoxazole) at 4 × 80 mg/kg and Compound 3 (3-(1-methyl-5-nitroimidazole-2-yl)-4, 5-hexamethylene-Δ2-isoxazoline) at 4 × 20 mg/kg both elicited a permanent cure. When tested against late (21-day) infections of T. brucei 667 neither Compound 2 nor Compound 3 given singly, or in various combinations was effective in that parasitaemias returned rapidly in nearly all mice.When the trypanocidal drug ‘Berenil’ was administered followed by the Compound 3, the majority of the mice with a 21-day infection of T. brucei TREU 667 or T. brucei LUMP 1001 were cured permanently. When ‘Berenil’ alone was used the mice usually relapsed within a few weeks of treatment. The isolate used affected the outcome of the treatment. Higher dosages of ‘Berenil’ followed by Compound 3 were required to cure infections with T. brucei LUMP 1001 than with T. brucei TREU 667.The importance of these findings in the treatment of human sleeping sickness with central nervous system involvement is discussed.  相似文献   

20.
Carbocyclic nucleoside analogues have a distinguished history as anti-infectious agents, including key antiviral agents. Toxicity was initially a concern but this was reduced by the introduction of 5′-nor variants. Here, we report the result of our preliminary screening of a series of 5′-norcarbocyclic uridine analogues against protozoan parasites, specifically the major pathogens Leishmania mexicana and Trypanosoma brucei. The series displayed antiparasite activity in the low to mid-micromolar range and establishes a preliminary structure-activity relationship, with the 4′,N3-di-(3,5-dimethylbenzoyl)-substituted analogues showing the most prominent activity. Utilizing an array of specially adapted cell lines, it was established that this series of analogues likely act through a common target. Moreover, the strong correlation between the trypanocidal and anti-leishmanial activities indicates that this mechanism is likely shared between the two species. EC50 values were unaffected by the disabling of pyrimidine biosynthesis in T. brucei, showing that these uridine analogues do not act directly on the enzymes of pyrimidine nucleotide metabolism. The lack of cross-resistance with 5-fluorouracil, also establishes that the carbocyclic analogues are not imported through the known uracil transporters, thus offering forth new insights for this class of nucleosides. The lack of cross-resistance with current trypanocides makes this compound class interesting for further exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号