首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel biotransformation process of podophyllotoxin (1) to produce picropodophyllotoxin (2) and podophyllic acid (3) was developed in this work. Eight bacteria which could modify the structure of podophyllotoxin were screened out from the tested fourteen bacteria. The highest conversion of podophyllotoxin (i.e., 70.2 ± 8.0%) was obtained when Pseudomonas aeruginosa CCTCC AB93066 was used as biocatalyst, so P. aeruginosa was selected as a typical biocatalyst in the following study. Product (2) and (3) were separated through D312 macroporous resin and sephadex LH-20 gel column chromatograph. On the basis of 1H NMR, 13C NMR, ESI–MS and Elemental Analysis, product (2) and (3) were identified as picropodophyllotoxin (2) and podophyllic acid (3), respectively. This suggested the site-specific isomerization and hydrolization of podophyllotoxin occurred during its biotransformation process by P. aeruginosa. For the first time, podophyllotoxin was biotransformed into its hydrolytic derivate (i.e., podophyllic acid).  相似文献   

2.
The potential role of parameters in the reduction of hexavalent chromium [Cr(VI)] by Pseudomonas aeruginosa is not well documented. In this study, laboratory batch studies were conducted to assess the effect of a variety of factors, e.g., carbon sources, salinity, initial Cr(VI) concentrations, co-existing ions and a metabolic inhibitor, on microbial Cr(VI) reduction to Cr(III) by P. aeruginosa AB93066. Strain AB93066 tolerated up to 400 mg/L of Cr(VI) in nutrient broth medium compared to only 150 mg/L of Cr(VI) in nutrient agar. This bacteria exhibited different levels of resistance against Pb(II) (200 mg/L), Cd(II) (100 mg/L), Ni(II) (100 mg/L), Cu(II) (100 mg/L), Co(II) (50 mg/L) and Hg(II) (5 mg/L). Cr(VI) reduction was significantly promoted by the addition of glucose and glycerine but was strongly inhibited by the presence of methanol and phenol. The rate of Cr(VI) reduction increased with increasing concentrations of Cr(VI) and then decreased at higher concentrations. The presence of Ni(II) stimulated Cr(VI) reduction, while Pb(II), Co(II) and Cd(II) had adverse impact on reduction ability of this strain. Cr(VI) reduction was also inhibited by high levels of NaCl, various concentrations of sodium azide and 20 mM of SO4 2?, MoO4 2?, NO3 ?, PO4 3?. No significant relationship was observed between Cr(VI) reduction and redox potential of the culture medium. Scanning electron microscopy showed visible morphological changes in the cells due to chromate stress. Fourier transform infrared spectroscopy analysis revealed chromium species was likely to form complexes with certain functional groups such as carboxyl and amino groups on the surface of P. aeruginosa AB93066. Overall, above results are beneficial to the bioremediation of chromate-polluted industrial wastewaters.  相似文献   

3.
The experimental study of conditions for the optimization of the batch cultivation of P. aeruginosa has been made. As revealed in this study the aim of this cultivation can be achieved by using exponentially growing culture in a dose of 1.10(9) cells/ml as seed material and by ensuring the conditions of rational air supply during the main cultivation process.  相似文献   

4.
5.
6.
Pseudomonas aeruginosa adherence to fibronectin has been shown to be important to bacterial colonization and infection. To better understand the mechanisms involved in this interaction, the role of the carbohydrate moiety of the fibronectin molecule in P. aeruginosa adhesion was studied. Strain NK 125 502 adhered to immobilized fibronectin with an adherence index of 4.8 x 10(5) CFU/ micro g. Periodic oxidation of fibronectin markedly reduced the adhesion of P. aeruginosa, while a neuraminidase treatment increased bacteria adhesion. N-Acetylgalactosamine, N-acetylglucosamine, sialic acid, and also lectin PA-IL worked as efficient inhibitors in adhesion assays: 59%, 70.7%, 100%, and 60% of inhibition, respectively. We have demonstrated here the involvement of a lectin-like process in the interaction of P. aeruginosa NK 125 502 with immobilized fibronectin.  相似文献   

7.
The identification of a series of compounds that specifically inhibit efflux by the MexAB-OprM pump system in Pseudomonas aeruginosa is described. Synthesis and in vitro structure-activity relationships (SARs) are outlined. Early leads lacked activity in animal models, and efforts to improve solubility and reduce serum protein binding by the introduction of polar groups are discussed.  相似文献   

8.
Abstract This study was undertaken to examine if receptor recognizing saccharides may be involved in the adherence of Pseudomonas aeruginosa to collagen type I and type II. We performed an adherence inhibition assay: cells of individual P. aeruginosa isolates attached to immobilized collagen type I or type II in the presence of monosaccharides, which could serve as blockers of bacterial receptors. Bacterial binding to collagen type I molecules was inhibited to the highest degree by sugar composition d -galactose/ d -mannose/ N -acetylneuraminic acid (5:5:1), whereas attachment of P. aeruginosa to collagen type II was inhibited by composition d -glucose/ d -galactose (1:1). The same strains which were sensitive to inhibition of binding to collagen type II by both collagen types, were also sensitive to blocking by composition d -glucose/ d -galactose. It suggests that saccharides play a role in adherence of P. aeruginosa to collagen type I and type II, and a common receptor for both types of collagen may be available on the surface of P. aeruginosa cells.  相似文献   

9.

Objectives

To develop a practical method to prepare tilianin by highly selective and efficient hydrolysis of the C-7 rhamnosyl group from linarin.

Results

Naringinase was utilized to selectively catalyze the formation of tilianin using linarin as the starting material. The reaction conditions, including temperature, pH, metal ions, substrate concentration and enzyme concentration, were optimized. At 60 °C, naringinase showed enhanced α-l-rhamnosidase activity while the β-d-glucosidase activity was abrogated. The addition of Mg2+, Fe2+ and Co2+ was also beneficial for selective biotransformation of linarin to tilianin. Under the optimized conditions (pH 7.0 at 60 °C), linarin could be nearly completely transformed to tilianin with excellent selectivity (>98.9 %), while that of the by-product acacetin was less than 1.1 %. In addition, the structure of target product tilianin was fully characterized by HR-MS and 1H-NMR.

Conclusion

A highly selective and efficient biotransformation of linarin to tilianin was developed by the proper control of incubation temperature, which enhanced the α-l-rhamnosidase activity of naringinase and blocked its β-d-glucosidase activity.
  相似文献   

10.
11.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

12.
《Process Biochemistry》2010,45(10):1652-1656
Novel biotransformation processes of dihydroartemisinic acid (1) and artemisinic acid (2) to their hydroxylated derivatives were investigated using the cell suspension cultures of Catharanthus roseus and Panax quinquefolium crown galls as two biocatalyst systems. Five biotransformation products, 3-α-hydroxydihydroartemisinic acid (3), 3-β-hydroxydihydroartemisinic acid (4), 15-hydroxy-cadin-4-en-12-oic acid (5), 3-α-hydroxyartemisinic acid (6) and 3-β-hydroxyartemisinic acid (7), were isolated by chromatograph methods and identified by the analysis of 1H NMR, 13C NMR, and ESI-MS spectra. Compounds 3–5 were obtained for the first time by biotransformation process. It was also the first time to transform artemisinic acid to yield epimeric 3-hydroxy artemisinic acids in plant cell culture system. The biocatalyst system of C. roseus cell cultures showed a great capacity of regio- and stereo-selective hydroxylation in allyl group of the exogenous substrates. The results also showed that the biocatalyst system of P. quinquefolium crown galls possessed the ability to hydroxylate propenyl group of exogenous substrates in a regio- and substrate-selective manner. Furthermore, the in vitro antitumor activity of the hydroxyl products was evaluated by MTT assay. The result indicated that α-hydroxyl products possessed stronger antitumor activity than β-hydroxyl products against the HepG2 and GLC-82 cell lines.  相似文献   

13.
AIM: Optimization of process parameters for mercury removal by an Hg (II)-reducing Pseudomonas aeruginosa strain. METHODS AND RESULTS: A strain of Ps. aeruginosa was found to reduce 10 mg l(-1) Hg (II) to Hg0 with 70% efficiency in 24 h. To optimize process performance, a statistical tool--Taguchi design of experiments (DOE)--was used to carry out 18 well-defined experiments (L18 Orthogonal array) with eight variable parameters (viz. agitation, temperature, pH, carbon source, medium volume: flask volume ratio and concentrations of Hg (II), ammonium sulfate and yeast extract). When data obtained were analyzed using specialized software for Taguchi design, Qualitek-4 (Nutek Inc., MI, USA), Hg (II) reduction efficiency was predicted to be 95% in 24 h under the optimized process parameters (also suggested by the software). In the validation experiment, Hg (II) removal of 99.29% in 24 h was indeed obtained. CONCLUSIONS: Using Taguchi DOE, Hg (II) reduction (and hence its removal) using Ps. aeruginosa could be improved by 29.3%. SIGNIFICANCE AND IMPACT OF THE STUDY: Taguchi approach could be employed as an efficient and time-saving strategy for parameter optimization in bioremediation processes.  相似文献   

14.
Tube dilution experiments showed that benzalkonium chloride (BC)-resistant mutants of Pseudomonas aeruginosa grown in the presence of 1,000 mug of BC per ml were at least 20 times more sensitive to polymyxin B and colistin sulfate than the BC-sensitive (BCS) parent strain. BCS cells selected for resistance to 500 mug of polymyxin B per ml remained sensitive to BC. There was little difference in the amount of carbenicillin, gentamicin sulfate, or rifampin needed to prevent growth of either the BCS or BC-resistant (BCR) strains. Growth of BCR cells was inhibited by ethylenediaminetetraacetate at a concentration of 400 mug/ml or less, whereas the BCS strain grew at ethylenediaminetetraacetate levels of 10,000 mug/ml. Phenylmercuric acetate and thimerosal inhibited growth of BCR and BCS cells at concentrations of 10 mug/ml or less. BCR cells were cross-resistant to >1,000 mug/ml concentrations of five other quaternary ammonium compounds, including three with C(16) alkyls and two with alkyl groups of shorter length. The BCS strain was also resistant to >1,000 mug/ml concentrations of the three quaternary ammonium compounds with C(16) alkyl groups but, in addition to BC, was inhibited by 200 mug/ml levels or less of the two quaternary ammonium compounds containing alkyl groups of less than 16 carbon atoms.  相似文献   

15.
Arsanilic acid (4-aminophenylarsonic acid) is widely used in the poultry and animal industries as a feed additive in the diets. Nearly all the added arsanilic acid is excreted unchanged in manure resulting in the risk of arsenic contamination. In this study, the effects of arsanilic acid on the kinetics, inhibition of methanogenic process and its biotransformation were investigated. The methane yield was not affected by arsanilic acid loading at concentration <0.46 mM, while the methane production was completely inhibited at concentration of 0.92 mM. The IC50 of arsanilic acid in this study was 0.47 mM. After 115 days of incubation, 37–59% of the added arsanilic acid was degraded. The species analysis indicated that at lower initial arsanilic acid concentration, the soluble inorganic arsenic mainly existed in the species of arsenate (As(V)), while at higher initial arsanilic acid concentration (>0.460 mM), the soluble inorganic arsenic mainly existed in the species of arsenite (As(III)), which explains why higher arsanilic acid concentration has severe inhibition to methanogens.  相似文献   

16.
Cadmium and zinc appear in the combined forms and they are co-pollutants. Cd is the most hazardous metal ion for human beings and causes renal dysfunction, liver and lungs damage, bone degeneration and blood damage. Though Zn is an essential nutrient, excess of Zn is toxic. Biological process was more important because conventional methods fail to remediate these pollutants due to high costs and less affordability. The screening and understanding of the functioning of microorganism plays an important role in removal and recovery of metals from heavy-metal-polluted water and soil. In our study, the strain Pseudomonas aeruginosa BC15 was isolated from oil-mill-treated waste water and it showed to be highly resistant to 6 mM Cd and 20 mM Zn in the solid and liquid media. The growth studies of BC15 strain in the medium without induction exhibited high tolerable capacity when compared to other microbes. Pretreatment of P. aeruginosa BC15 with sub-lethal concentrations of Cd induced adaptive resistance to lethal doses of Cd. Cadmium-induced cells also showed cross resistance to lethal concentration of zinc. The organism had high resistance against Cd and Zn. This has been clearly proven through biosorption studies: Cd was absorbed up to 62% and Zn about 60% in single solution, whereas in binary solution Cd was biosorbed up to 82% and Zn 85%. In conclusion, this study reveals the significance of using the strain P. aeruginosa BC15 in the bioremediation of Cd and Zn from industrial waste water and contaminated soil.  相似文献   

17.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

18.
Solvent tolerant Pseudomonas aeruginosa strain PseA has been studied for lipase activity. This strain has earlier been reported to be secreting alkaline and solvent stable protease. It produced an extra cellular lipase with suitable properties for detergent applications viz. (i) alkaline in nature, (ii) stability and compatibility towards bleach oxidants, surfactants and detergent formulations and (iii) resistant to proteolysis. Since the culture supernatant contains both protease and lipase which are together required in detergent formulations, enzymes from P. aeruginosa seem ideal for use as detergent additive. P. aeruginosa lipase exhibited remarkable stability in wide range of organic solvents at 25% (v/v) concentration. This property can be useful for solvent bioremediation and biotransformations in non-aqueous media. Media optimization for cost effective production of lipase was carried out by response surface methodology which led to 5.58-fold increase in lipase production (4580 IU/ml) over un-optimized media.  相似文献   

19.
Pseudomonas aeruginosa produces the extracellular enzyme protease, which plays an important role in the development of the infectious process caused by this microorganism. Protease is produced in three types, I, II and III, with protease II being responsible for 75% of the total proteolytic activity of protease. The molecular mass of protease II has been determined by different methods; the values obtained are 23000 and 39500. This discrepancy may be associated with an autodigestion of the enzyme or with the presence in the periplasm of its producer of a nonactive precursor whose activation may lead to a change in the molecular mass. Pseudomonas aeruginosa protease is capable of cleaving high-molecular proteins into low-molecular ones, which are taken up by the microbial cell and serve as a source of nutrition. When injected into the bloodstream of animals, purified protease produces haemorrhagic lesions in internal organs; its subcutaneous injection provokes haemorrhage in the skin and subcutaneous tissues. Manifestation of high P. aeruginosa virulence on a model of burnt mouse skin requires that not only exotoxin A but also protease be produced. The protease is immunogenic and has, in toxoid form, been used experimentally in a multicomponent vaccine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号