首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Studies were conducted to assess progesterone antagonists (PAs) and progesterone receptor modulators (PRMs) with respect to PR agonistic and antagonistic activities in vivo. These properties are not always adequately reflected in transactivation in vitro models. Studies were performed in pregnant rats, estrogen-primed rabbits (McPhail -Test), and cycling and pregnant guinea pigs. Tested compounds included mifepristone (RU486), onapristone, J867, J956, J1042, and ZK137316. J-compounds induced sub-maximum endometrial transformation and, paradoxically, inhibited effects of progesterone in rabbits. Mifepristone, onapristone, and ZK137316 behaved as 'pure' antagonists in this species. Inhibition of uterine PGF(2alpha) secretion and inhibition of luteolysis in cycling guinea pigs were more sensitive parameters of PR-agonistic and antagonistic properties. 'Pure' PAs inhibited uterine PGF(2alpha) secretion and luteal regression completely. The PR agonist R5020 reversed both effects which demonstrates a PR mediation. Agonistic PRMs (J-substances and mifepristone) showed no or blunted antiluteolytic effects compared to the 'pure' PR antagonist onapristone. When tested in pregnant guinea pigs for their labor-inducing potential, PR agonistic PRMs had much reduced or abolished abortifacient activity compared to mifepristone (mifepristone > J956 > J867/J912 > J1042). However, in cycling animals, superior antiovulatory and antiproliferative properties of the J-substances were seen. Antiovulatory effects of 'pure' and agonistic PRMs are probably due to different mechanisms. The relevance of rodent studies for antiovulatory and uterine antiproliferative effects for the human is still uncertain. The non-abortifacient PRM J1042 induced stromal compaction and inhibition of endometrial proliferation in monkeys, but this effect was not stronger than that of the 'purer' PAs. 'Pure' PAs are important pharmacological tools analogous to PRKO models to study the role of PR in the menstrual cycle and in pregnancy.  相似文献   

2.
Spitz IM  Chwalisz K 《Steroids》2000,65(10-11):807-815
Both progesterone receptor modulators (PRMs) as well as pure progesterone antagonists (PAs) have numerous proven and potential therapeutic applications in female health care. Mifepristone, a PRM with only marginal agonistic activity, together with a prostaglandin can terminate pregnancies of less than 9 weeks duration; mifepristone is also used in the preparation of women at later gestational stages whose pregnancies are terminated with prostaglandins or surgery. Mifepristone causes expulsion of the uterine contents following intrauterine fetal death and promotes dilation of the non-pregnant primigravid uterus. It is also effective in the treatment of missed abortion. Together with methotrexate, mifepristone can be used in the medical treatment of ectopic pregnancy. Both PAs and PRMs display antiproliferative effects on the endometrium. Because of this, they have application in the treatment of endometriosis, an estrogen-dependent condition. They may also be utilized to reduce myoma size, acting as both a PA and antiproliferative agent. Unlike GnRH agonists, long-term use in endometriosis and myoma is not associated with loss of bone and hypoestrogenism. PRMs may also be useful in IVF programs to prevent a premature LH surge and to delay the emergence of the implantation window. Some PRMs have potential use as hormone replacement therapy in women during menopause or in those with dysfunctional uterine bleeding.  相似文献   

3.
Progesterone antagonists (PAs, antiprogestins) can modulate estrogenic effects in various estrogen-dependent tissues. These modulatory effects are complex and depend on species, tissue, type of compound, dose, and duration of treatment. In non-human primates, PAs, including mifepristone, ZK 137 316 and ZK 230 211, inhibit endometrial proliferation and induce amenorrhea. When administered chronically at relatively low doses, these compounds block the mitotic activity of endometrial epithelium and induce stromal compaction in a dose-dependent manner in both spayed and intact monkeys at high estradiol concentrations. These effects were accompanied by an atrophy of spiral arteries. The antiproliferative effects were endometrium-specific, since the estrogenic effects in the oviduct and vagina were not inhibited by PAs. Similar endometrial antiproliferative effects were also found after treatment with the progesterone receptor modulator (PRM), mesoprogestin J1042. The endometrial antiproliferative effects of PAs, particularly within the endometrial glands, were also observed in spayed rabbits. In spayed rats, however, the PAs did not inhibit, but rather enhanced, various estrogen responses, including endometrial proliferation, pointing to species-specific differences. In conclusion, our studies indicate that both pure PAs and PRMs selectively inhibit estrogen-dependent endometrial proliferation in the primate endometrium without affecting estrogenic response in other estrogen-dependent tissues or inducing unscheduled bleeding. Our studies indicate that the spiral arteries, which are unique to the primate endometrium, are the primary targets that are damaged or inhibited by PAs and PRMs. The damage to these unique vessels may underlay the paradoxical, endometrium-specific, antiproliferative effects of these compounds. Hence, the properties of PAs and PRMs (mesoprogestins) open up new applications in gynecological therapy and hormone replacement therapy.  相似文献   

4.
Selective progesterone receptor modulators (SPRMs) have been suggested as therapeutic agents for treatment of gynecological disorders. One such SPRM, asoprisnil, was recently in clinical trials for treatment of uterine fibroids and endometriosis. We present the crystal structures of progesterone receptor (PR) ligand binding domain complexed with asoprisnil and the corepressors nuclear receptor corepressor (NCoR) and SMRT. This is the first report of steroid nuclear receptor crystal structures with ligand and corepressors. These structures show PR in a different conformation than PR complexed with progesterone (P4). We profiled asoprisnil in PR-dependent assays to understand further the PR-mediated mechanism of action. We confirmed previous findings that asoprisnil demonstrated antagonism, but not agonism, in a PR-B transfection assay and the T47D breast cancer cell alkaline phosphatase activity assay. Asoprisnil, but not RU486, weakly recruited the coactivators SRC-1 and AIB1. However, asoprisnil strongly recruited the corepressor NCoR in a manner similar to RU486. Unlike RU486, NCoR binding to asoprisnil-bound PR could be displaced with equal affinity by NCoR or TIF2 peptides. We further showed that it weakly activated T47D cell gene expression of Sgk-1 and PPL and antagonized P4-induced expression of both genes. In rat leiomyoma ELT3 cells, asoprisnil demonstrated partial P4-like inhibition of cyclooxygenase (COX) enzymatic activity and COX-2 gene expression. In the rat uterotrophic assay, asoprisnil demonstrated no P4-like ability to oppose estrogen. Our data suggest that asoprisnil differentially recruits coactivators and corepressors compared to RU486 or P4, and this specific cofactor interaction profile is apparently insufficient to oppose estrogenic activity in rat uterus.  相似文献   

5.
The influences of the synthetic progestin, medroxyprogesterone acetate (MPA), the progesterone receptor modulator J867, and the antagonist ZK137316 were studied in vitro on isolated endometrial epithelial cells, as well as endometrial fibroblasts. We evaluated the expression of estrogen receptor alpha (ER) and the progesterone receptor (PR) by RT-PCR. ER and PR were strongly expressed in the fibroblasts and epithelial cells under treatment with 10(-8) M 17beta-estradiol (E(2)). Treatment with 10(-6) M J867 or ZK137316 upregulated the PR expression as did E(2), in contrast to treatment with 10(-6) M MPA, which caused a downregulation of PR in epithelial cells, but not in fibroblasts. In addition, the vascular endothelial growth factor (VEGF) release into the cell culture medium was analyzed by a VEGF-ELISA. VEGF which plays an important role in angiogenesis, is regulated by steroid hormones as well as hypoxia. E(2) stimulates VEGF release into the medium in both cell types. MPA reduces VEGF release significantly in the fibroblast cell culture, but increases it in the epithelial cell culture. ZK137316, in the presence or absence of E(2), reduces VEGF release in fibroblast cell culture. J867 increases the VEGF production in fibroblasts only in the presence of E(2). Both compounds show no significant effects, compared to E(2), in epithelial cell culture. The different results for the epithelial cells and fibroblasts indicate that the pharmacological effects of PR modulators (PRMs) and progesterone antagonists (PAs) may be cell specific and depend on the presence or absence of partial progestagenic agonistic activities. This observation opens up new perspectives for various clinical applications.  相似文献   

6.
Progesterone antagonists and progesterone receptor modulators: an overview   总被引:16,自引:0,他引:16  
Spitz IM 《Steroids》2003,68(10-13):981-993
  相似文献   

7.
Klijn JG  Setyono-Han B  Foekens JA 《Steroids》2000,65(10-11):825-830
Progesterone antagonists (PAs) (antiprogestins) or progesterone receptor modulators (PRMs) form an interesting category of new hormonal agents in the treatment of breast cancer. In vitro, antiproliferative effects of different PAs are mainly observed in estrogen-stimulated growth of PR-positive tumor cell lines. Both progestin agonist/antagonist actions on mammary tumor cells are dependent on the type of cell line, culture medium and concentrations of the PAs used, and type of biologic response measured. In various experimental animal tumor models, different PAs showed a greater antitumor activity than tamoxifen or high-dose progestins. Most interestingly, combination treatment of different PAs (mifepristone, ORG 31710, onapristone) or PRMs with different antiestrogens (tamoxifen, droloxifen, ICI 164384) or with an aromatase inhibitor (atemestane) showed greater antitumor efficacy than treatment with each single type of drug alone. These additive antiproliferative effects were demonstrated in various experimental in vitro and in vivo models. In some studies, these effects were accompanied by additive effects on several cell biologic parameters. In pretreated postmenopausal patients with metastatic breast cancer, objective responses have been observed in 10-12%, and stable disease in 42-46% of the patients; in previously untreated patients objective response rates of 11 and 56% have been reported. The clinical development of onapristone was stopped because of liver toxicity. At the present time, apart from development of new pure potent PAs, clinical investigation of combined therapy of PAs with antiestrogens are urgently needed.  相似文献   

8.
Selective progesterone receptor modulators (SPRMs) represent a new class of progesterone receptor ligands that exert clinically relevant tissue-selective progesterone agonist, antagonist, partial, or mixed agonist/antagonist effects on various progesterone target tissues in an in vivo situation depending on the biological action studied. The SPRM asoprisnil is being studied in women with symptomatic uterine leiomyomata and endometriosis. Asoprisnil shows a high degree of uterine selectivity as compared to effects on ovulation or ovarian hormone secretion in humans. It induces amenorrhea and decreases leiomyoma volume in a dose-dependent manner in the presence of follicular phase estrogen concentrations. It also has endometrial antiproliferative effects. In pregnant animals, the myometrial, i.e. labor-inducing, effects of asoprisnil are blunted or absent. Studies in non-human primates played a key role during the preclinical development of selective progesterone receptor modulators. These studies provided the first evidence of uterus-selective effects of asoprisnil and structurally related compounds, and the rationale for clinical development of asoprisnil.  相似文献   

9.
Asoprisnil is a novel selective steroid receptor modulator that shows unique pharmacodynamic effects in animal models and humans. Asoprisnil, its major metabolite J912, and structurally related compounds represent a new class of progesterone receptor (PR) ligands that exhibit partial agonist and antagonist activities in vivo. Asoprisnil demonstrates a high degree of receptor and tissue selectivity, with high-binding affinity for PR, moderate affinity for glucocorticoid receptor (GR), low affinity for androgen receptor (AR), and no binding affinity for estrogen or mineralocorticoid receptors. In the rabbit endometrium, both asoprisnil and J912 induce partial agonist and antagonist effects. Asoprisnil induces mucification of the guinea pig vagina and has pronounced anti-uterotrophic effects in normal and ovariectomized guinea pigs. Unlike antiprogestins, asoprisnil shows only marginal labor-inducing activity during mid-pregnancy and is completely ineffective in inducing preterm parturition in the guinea pig. Asoprisnil exhibits only marginal antiglucocorticoid activity in transactivation in vitro assays and animal models. In male rats, asoprisnil showed weak androgenic and anti-androgenic properties. In toxicological studies in female cynomolgus monkeys, asoprisnil treatment abolished menstrual cyclicity and endometrial atrophy. Early clinical studies of asoprisnil in normal volunteers demonstrated a dose-dependent suppression of menstruation irrespective of the effects on ovulation, with no change in basal estrogen concentrations and no antiglucocorticoid effects. Unlike progestins, asoprisnil does not induce breakthrough bleeding. With favorable safety and tolerability profiles thus far, asoprisnil appears promising as a novel treatment of gynecological disorders, such as uterine fibroids and endometriosis.  相似文献   

10.
Progesterone antagonists (PAs) and progesterone receptor modulators (PRMs) have contraceptive potential by suppressing follicular development, delaying the surge of luteinizing hormone (LH), retarding endometrial maturation, and promoting endometrial bleeding. Mifepristone, in daily doses of 2-10 mg, blocks the LH surge and ovulation. Many of the studies were conducted in women not at risk of pregnancy, and thus the contraceptive efficacy is not yet known. Nevertheless, there is evidence that daily doses of 2 or 5 mg of mifepristone have contraceptive potential. Because of anovulation, there may be an unopposed estrogen effect on the endometrium, although this risk may be mitigated by the noncompetitive anti-estrogenic activity exhibited by both PAs and PRMs. Low doses of PAs and PRMs, which do not affect ovulation, retard endometrial maturation, indicating that the endometrium is exquisitely sensitive to these compounds. This raises the prospect of endometrial contraception, i.e. prevention of endometrial maturation without disturbing ovulation or producing alterations in bleeding patterns. This approach works well in monkeys but was not found to be very promising when given to women not using contraception. On the other hand, 200 mg mifepristone administered 48 h after the LH surge, which has minimal or no effect on ovulation and bleeding patterns, is an effective contraceptive; yet, it is not a practical approach to contraception. Late luteal phase administration of mifepristone produces menstrual bleeding. However, when mifepristone was administered every month at the end of the cycle either alone or together with prostaglandins, it was not very effective in preventing pregnancy. In contrast, a mifepristone-prostaglandin combination has been shown to be a very effective treatment for occasional menstrual regulation, with vaginal bleeding induced in 98% of pregnant women, with menses delay of 11 days or less. Mifepristone is an excellent agent for emergency contraception when used within 120 h of unprotected intercourse. It is also possible that PAs and PRMs may be used to reduce the occurrence of bleeding irregularities induced by progestin-only contraceptive methods. Both classes of progesterone receptor ligands may also have contraceptive efficacy by having a pharmacological effect on the embryo or altering tubal transport or other aspects of tubal physiology.  相似文献   

11.
We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand to increasing stability of the agonist conformation of helix-12 via a specific hydrogen-bond network including Glu(723). This interaction is absent when the full antagonist, RU486, binds to PR. Combined with a previously reported structure of Asoprisnil bound to the antagonist state of the receptor, this structure extends our understanding of the complex molecular interactions underlying the mixed agonist/antagonist profile of the compound. In addition, we present the structure of PR in its agonist conformation bound to the mixed profile compound Org3H whose reduced antagonistic activity and increased agonistic activity compared with reference antagonists is due to an induced fit around Trp(755), resulting in a decreased steric clash with Met(909) but inducing a new internal clash with Val(912) in helix-12. This structure also explains the previously published observation that 16α attachments to RU486 analogs induce mixed profiles by altering the binding of 11β substituents. Together these structures further our understanding of the steric and electrostatic factors that contribute to the function of steroid receptor modulators, providing valuable insight for future compound design.  相似文献   

12.
A series of tetrahydroisoquinoline-N-phenylamide derivatives were designed, synthesized, and tested for their relative binding affinities, and antagonistic activities against estrogen receptor (ER). Compound 1f (relative binding affinity, RBA=5) showed higher binding affinity than tamoxifen (RBA=1), a potent ER antagonist and currently being used for breast cancer therapy. Compound 1f also exerted optimal antagonistic activity against ER in reporter and cell proliferation assays. Interestingly, compound 1j, which only has a minor agonistic effect against ER, acted as a progesterone receptor (PR) antagonist and exerted agonistic activity against AP-1 through ER pathway. Our results show that these new compounds can be employed as leading pharmacophore for further development of potent selective ER and/or PR modulators or antagonists.  相似文献   

13.
Allan GF  Palmer E  Musto A  Lai MT  Clancy J  Palmer S 《Steroids》2006,71(7):578-584
Progesterone receptor modulators have diverse potential therapeutic uses, including the treatment of endometriosis, uterine fibroids and breast cancer. Here we describe the molecular properties and preclinical pharmacology of a new steroidal progestin antagonist, JNJ-1250132. The compound is a high affinity ligand for the progesterone receptor, possessing cross-reactivity with other steroid receptors comparable to that of steroidal antagonists such as mifepristone. It inhibits progestin-inducible alkaline phosphatase gene expression in T47D human breast cancer cells, and also inhibits their in vitro proliferation. It inhibits gestation in rats and progesterone-dependent endometrial transformation in rabbits with efficacies comparable to mifepristone. Like mifepristone, it is a glucocorticoid antagonist in vivo. In cell-free DNA binding assays, the compound inhibits binding of the human progesterone receptor to a progesterone response element, and thus is similar to onapristone in this regard. In contrast, as judged by proteolytic analysis, JNJ-1250132 induces a receptor conformation more similar to that induced by mifepristone, which promotes receptor binding to DNA. Therefore, JNJ-1250132 has unique effects on the progesterone receptor that may translate into a novel clinical profile.  相似文献   

14.
Recently, a new class (often referred to as SPRMs: selective progesterone receptor modulators) of progesterone receptor ligands with mixed agonist/antagonist properties has been described. Such compounds are envisaged, for example, as treatment for endometriosis, uterine fibroids, and leiomyomas. Existing SPRMs include Asoprisnil 1 and Uliprisnil acetate 2. In our hands, however, these compounds proved to have a predominantly or exclusively antagonistic in vitro profile, which may make this type of compound less attractive, for example, as contraceptives. We therefore aimed at a class of mixed-profile compounds that would show a more evenly balanced agonist/antagonist profile. A novel class of 11beta-[4-(heteroaryl)phenyl]-substituted pregnanes was identified that displayed the desired balance. Contrary to known SPRMs, this novel class of MPP (mixed-profile progestagen) was found to have a truly mixed activity, including a sizeable agonist component.  相似文献   

15.
Shi L  Shi SQ  Given RL  von Hertzen H  Garfield RE 《Steroids》2003,68(10-13):1077-1084
Progesterone is known to be involved in many steps in female reproduction including control of implantation and uterine-cervical function during pregnancy. Our studies in rats and guinea pigs indicate that progesterone inhibits uterine contractility and cervical softening during pregnancy. Progesterone levels or actions decline near the end of pregnancy leading to the onset of labor. Treatment with progestin agonists prolongs pregnancy and inhibits cervical softening, whereas treatment with antiprogestins (mifepristone or onapristone) stimulates uterine contractility, cervical softening and premature delivery. Thus the effect of progesterone receptor modulators in the uterus and cervix depend up on the degree of intrinsic agonistic/antagonistic activities. Our recent studies show that progesterone interacts with nitric oxide (NO) to maintain pregnancy and that administration of progesterone antagonists with NO synthase inhibitors act synergistically to stimulate labor. In addition our studies show that combinations of progesterone antagonists with aromatase inhibitors act synergistically to induce labor. Similarly antiprogestins interact with NO synthase or aromatase inhibitors to block implantation through action on the endometrium. These studies suggest new applications for combined therapies of progestin receptor modulators with aromatase inhibitors or agents that modify NO production for contraception, stimulation of labor, estrogen-dependent diseases and improved outcomes in pregnancy.  相似文献   

16.
Novel 5-aryl indanones, inden-1-one oximes, and inden-1-ols were synthesized and evaluated as progesterone receptor (PR) modulators using the T47D cell alkaline phosphatase assay. Both PR agonists and antagonists were achieved with appropriate 3- and 5-substitution from indanones and inden-1-ols while inden-1-one oximes provided only PR antagonists. Several compounds such as 10 and 11 demonstrated potent in vitro PR agonist potency similar to that of steroidal progesterone (1). In addition, a number of compounds (e.g., 12, 13, 17, 18) showed potent PR antagonist activity indicating the indanones and derivatives are promising PR modulator templates.  相似文献   

17.
A novel series of oxa-steroids 6 derived from (8S, 13S, 14R)-7-oxa-estra-4,9-diene-3,17-dione 1 have been synthesized and identified as potent and selective progesterone receptor antagonists. These novel oxa-steroids showed similar potency to mifepristone. Preliminary SAR study resulted in the most potent 17-phenylethynyl oxa-steroid 6i wih an IC(50) of 1.4nM. In contrast to the equipotent mifepristone toward the progesterone receptor (PR) and glucocorticoid receptor (GR), compound 6i had over 200-fold selectivity for PR over GR.  相似文献   

18.
Use of estrogen or estrogen / progestin combination was an approved regimen for menopausal hormonal therapy (MHT). However, more recent patient-centered studies revealed an increase in the incidence of breast cancer in women receiving menopausal hormone therapy with estrogen plus progestin rather than estrogen alone. Tissue selective estrogen complex (TSEC) has been proposed to eliminate the progesterone component of MHT with supporting evidences. Based on our previous studies it is evident that SPRMs have a safer profile on endometrium in preventing unopposed estrogenicity. We hypothesized that a combination of estradiol (E2) with selective progesterone receptor modulator (SPRM) to exert a safer profile on endometrium will also reduce mammary gland proliferation and could be used to prevent breast cancer when used in MHT. In order to test our hypothesis, we compared the estradiol alone or in combination with our novel SPRMs, EC312 and EC313. The compounds were effectively controlled E2 mediated cell proliferation and induced apoptosis in T47D breast cancer cells. The observed effects were found comparable that of BZD in vitro. The effects of SPRMs were confirmed by receptor binding studies as well as gene and protein expression studies. Proliferation markers were found downregulated with EC312/313 treatment in vitro and reduced E2 induced mammary gland proliferation, evidenced as reduced ductal branching and terminal end bud growth in vivo. These data supporting our hypothesis that E2+EC312/EC313 blocked the estrogen action may provide basic rationale to further test the clinical efficacy of SPRMs to prevent breast cancer incidence in postmenopausal women undergoing MHT.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号