首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of a coral carbonic anhydrase (CA, EC 4.2.1.1) has been investigated with a series of inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate. The full-length scleractinian coral Stylophora pistillata CA, STPCA, has a significant catalytic activity for the physiological reaction of CO2 hydration to bicarbonate, similarly to the ubiquitous human isoforms hCA I (cytosolic) and hCA VI (secreted). The best STPCA anion inhibitors were bromide, iodide, carbonate, and sulfamate, with inhibition constants of 9.0–10.0 μM.  相似文献   

2.
An α-carbonic anhydrase (CA, EC 4.2.1.1) has been recently cloned and characterized in the human pathogenic bacterium Vibrio cholerae, denominated VchCA (Del Prete et al. J. Med. Chem. 2012, 55, 10742). This enzyme shows a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Many inorganic anions and several small molecules were investigated as VchCA inhibitors. Inorganic anions such as cyanate, cyanide, hydrogen sulfide, hydrogen sulfite, and trithiocarbonate were effective VchCA inhibitors with inhibition constants in the range of 33–88 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KIs of 7–43 μM. Halides (bromide, iodide), bicarbonate and carbonate were much less effective VchCA inhibitors, with KIs in the range of 4.64–28.0 mM. The resistance of VchCA to bicarbonate inhibition may represent an evolutionary adaptation of this enzyme to living in an environment rich in this ion, such as the gastrointestinal tract, as bicarbonate is a virulence enhancer of this bacterium.  相似文献   

3.
A series of aromatic, arylalkenyl- and arylalkyl boronic acids were assayed as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, and the transmembrane, tumor-associated hCA IX and XII. The best hCA I and II inhibitor was biphenyl boronic acid with, a KI of 3.7–4.5 μM, whereas the remaining derivatives showed inhibition constants in the range of 6.0–1560 μM for hCA I and of 6.0–1050 μM for hCA II, respectively. hCA IX and XII were effectively inhibited by most of the aromatic boronic acids (KIs of 7.6–12.3 μM) whereas the arylalkenyl and aryl–alkyl derivatives generally showed weaker inhibitory properties (KIs of 34–531 μM). The nature of the moiety substituting the boronic acid group strongly influenced the CA inhibitory activity, with inhibitors possessing low micromolar to millimolar activity being detected in this small series of investigated compounds. This study proves that the B(OH)2 moiety represents a new zinc-binding group for the generation of effective CA inhibitors targeting isoforms with medicinal chemistry applications. The boronic acids probably bind to the Zn(II) ion within the CA active site leading to a tetrahedral geometry of the metal ion and of the B(III) derivative.  相似文献   

4.
We investigated the catalytic activity and inhibition of both the zinc and cadmium-containing R1 fragment of the ζ-class carbonic anhydrase (CA, EC 4.2.1.1) from the marine diatom Thalassiosira weissflogii. Our data prove that these enzymes are not only very efficient catalysts for the physiological reaction, but also sensitive to sulfonamide and anion inhibitors, with inhibition constants from the nanomolar to millimolar range. Acetazolamide inhibited the two enzymes with KIs in the range of 58–92 nM. The best anion inhibitors of Cd-R1 were thiocyanate, sulfamate and sulfamide, with KIs of 10–89 μM, whereas the best Zn-R1 anion inhibitors were sulfamate and sulfamide with KIs of 60–72 μM. These enzymes were only weakly inhibited by chloride, bromide or sulfate, main anion components of sea water, with inhibition constants in the range of 0.24–0.85 mM. Thus, similarly to CAs belonging to other classes, the ζ-class CA (with either cadmium or zinc ions at the active site) was inhibited by both anions and sulfonamides.  相似文献   

5.
The protein tyrosine kinases (PTKs) are essential enzymes in cellular signaling processes that regulate cell growth, differentiation, migration and metabolism. Their inhibition was recently shown to constitute a new modality for treating cancers. Two clinically used PTK inhibitors (PTKIs), imatinib (Glivec?/Gleevec?) and nilotinib (Tasigna?) were investigated for their effects on the zinc enzymes carbonic anhydrases (CAs, EC 4.2.1.1). The two PTKIs inhibited all 13 catalytically active mammalian isoforms CA I–XV with KIs in the range of 4.1 nM–20.2 μM. CA I and CA II were the most potently inhibited isoforms (KIs of 4–32 nM), whereas CA VA and VB showed the lowest affinity for these drugs (KIs of 5.4–20.2 μM). In cancer cells, these inhibitors may interact with CAs in addition to the targets for which they were designed, the PTKs.  相似文献   

6.
The α-carbonic anhydrase (CA, EC 4.2.1.1) from the extremophilic bacterium Sulfurihydrogenibium azorense, SazCA, is the fastest CA known to date as a catalyst for CO2 hydration to bicarbonate and protons. We report an inhibition study of this enzyme with inorganic anions and several other small molecules known to interact with these metalloenzymes. Bicarbonate, carbonate and sulfate were ineffective SazCA inhibitors whereas most other inorganic anions were submillimolar inhibitors. The best inhibition was observed with trithiocarbonate, diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic, and phenylarsonic acid, which showed inhibition constants in the range of 3–39 μM. As SazCA is very stable at high temperatures (being an ‘extremo-CA’) and very effective as a catalyst, the inhibition studies reported here may be crucial for designing biotechnological applications for this enzyme, for example for CO2 capture processes.  相似文献   

7.
An activation study of the membrane-associated carbonic anhydrase (CA, EC 4.2.1.1) isoform XV with a series of natural and non-natural amino acids and aromatic/heterocyclic amines is reported. Murine CA XV was strongly activated by some amino acids (d-Phe, l-/d-DOPA, d-Trp, l-Tyr) and amines (dopamine, serotonin, l-adrenaline and 4-(2-aminoethyl)-morpholine) with activation constants in the range of 4.0–9.5 μM. l-/d-His, l-Phe, histamine and several other heterocyclic amines showed less efficient activation (KAs in the range of 11.6–33.4 μM). The activation profile of CA XV is quite different from that of the cytosolic isoforms CA I and II or the membrane-associated CA IV. All mammalian isoforms CA I–XV are thus characterized for their interaction with this set of amino acid and amine activators, some of which are biogenic amines or neurotransmitters present in sufficiently high amounts in various tissues for exerting significant biologic responses.  相似文献   

8.
Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with a series of aromatic, arylalkenyl- and arylalkylboronic acids was investigated. Aromatic, 4-phenylsubstituted- and 2-naphthylboronic acids were the best Can2 inhibitors, with inhibition constants in the range of 8.5–11.5 μM, whereas arylalkenyl and aryalkylboronic acids showed KIs in the range of 428–3040 μM. Nce103 showed a similar inhibition profile, with the 4-phenylsubstituted- and 2-naphthylboronic acids possessing KIs in the range of 7.8–42.3 μM, whereas the arylalkenyl and aryalkylboronic acids were weaker inhibitors (KIs of 412–5210 μM). The host human enzymes CA I and II were also effectively inhibited by these boronic acids. The B(OH)2 moiety is thus a new zinc-binding group for designing effective inhibitors of the α- and β-CAs.  相似文献   

9.
A series of polyphenolic derivatives, including resveratrol, dobutamine, curcumin, catechin and silymarine were investigated for the inhibition of all the catalytically active mammalian isozymes of the metalloprotein carbonic anhydrase (CA, EC 4.2.1.1), that is, CA I–CA XV. These polyphenols effectively inhibited CAs, with KIs in the range of 380 nM–12.02 μM. The various isozymes showed quite diverse inhibition profiles with these compounds, which possess scaffolds not present in other investigated CA inhibitors (CAIs). These data may lead to drug design campaigns of effective CAIs possessing a diverse inhibition mechanism compared to sulfonamide/sulfamate inhibitors, based on such less investigated scaffolds.  相似文献   

10.
A β-carbonic anhydrase (CA, EC 4.2.1.1), the protein encoded by the NCE103 gene of Candida glabrata which also present in Candida albicans and Saccharomyces cerevisiae, was cloned, purified, characterized kinetically and investigated for its inhibition by a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate and some isosteric species. The enzyme showed significant CO2 hydrase activity, with a kcat of 3.8 × 105 s?1 and kcat/KM of 4.8 × 107 M?1 s?1. The Cà glabrata CA (CgCA) was moderately inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, KIs of 0.60–1.12 mM) but strongly inhibited by bicarbonate, nitrate, nitrite and phenylarsonic acid (KIs of 86–98 μM). The other anions investigated showed inhibition constants in the low millimolar range, with the exception of bromide and iodide (KIs of 27–42 mM).  相似文献   

11.
Mutation of amino acid residues 94, 96 and 119 to histidine(s) in the human carbonic anhydrase (CA, EC 4.2.1.1) related proteins CARP VIII, X and XI restored the zinc binding and catalytic activity for the hydration of CO2 to bicarbonate. CA VIII, X and XI thus obtained showed high catalytic activity (67.3–92.0% of the activity of hCA II and much higher compared to hCA I) and were inhibited in the milli-micromolar range by inorganic anions, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid. Among the three new isoforms, hCA X was the most efficient enzyme and also showed the highest affinity for anion inhibitors (KIs of 3.6–68 μM for phenylboronic acid, sufamic acid, sulfamide, cyanide and azide). hCA VIII was poorly inhibited by halides, cyanate, nitrate and sulfate (KIs of 38.4–65.4 mM), whereas CA XI had a behavior intermediate between that of hCA VIII and X, both regarding the catalytic activity and sensitivity to anion inhibitors.  相似文献   

12.
The inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic fungi Cryptococcus neoformans (Can2) and Candida albicans (Nce103) with carboxylates such as the C1–C5 aliphatic carboxylates, oxalate, malonate, maleate, malate, pyruvate, lactate, citrate and some benzoates has been investigated. The best Can2 inhibitors were acetate and maleate (KIs of 7.3–8.7 μM), whereas formate, acetate, valerate, oxalate, maleate, citrate and 2,3,5,6-tetrafluorobenzoate showed less effective inhibition, with KIs in the range of 42.8–88.6 μM. Propionate, butyrate, malonate, l-malate, pyruvate, l-lactate and benzoate, were weak Can2 inhibitors, with inhibition constants in the range of 225–1267 μM. Nce103 was more susceptible to inhibition with carboxylates compared to Can2, with the best inhibitors (maleate, benzoate, butyrate and malonate) showing KIs in the range of 8.6–26.9 μM. l-Malate and pyruvate together with valerate were the less efficient Nce103 inhibitors (KIs of 87.7–94.0 μM), while the remaining carboxylates showed a compact behavior of efficient inhibitors (KIs in the range of 35.1–61.6 μM). Notably the inhibition profiles of the two fungal β-CAs was very different from that of the ubiquitous host enzyme hCA II (belonging to the α-CA family), with maleate showing selectivity ratios of 113.6 and 115 for Can2 and Nce103, respectively, over hCA II inhibition. Therefore, maleate is a promising starting lead molecule for the development of better, low nanomolar, selective β-CA inhibitors.  相似文献   

13.
A β-carbonic anhydrases (CAs, EC 4.2.1.1) was recently cloned, purified and characterized kinetically in the pathogen Clostridium perfringens. We report here the first inhibition study of this enzyme (CpeCA). CpeCA was poorly inhibited by iodide and bromide, and was inhibited with KIs in the range of 1–10 mM by a range of anions such as (thio)cyanate, azide, bicarbonate, nitrate, nitrite, hydrogensulfite, hydrogensulfide, stannate, tellurate, pyrophosphate, divanadate, tetraborate, peroxydisulfate, sulfate, iminodisulfonate and fluorosulfonate. Better inhibitory power, with KIs of 0.36–1.0 mM, was observed for cyanide, carbonate, selenate, selenocyanide, trithiocarbonate and diethyldithiocarbamate, whereas the best CpeCA inhibitors were sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, which had KIs in the range of 7–75 μM. This study thus provides the basis for developing better clostridial enzyme inhibitors with potential as antiinfectives with a new mechanism of action.  相似文献   

14.
A series of coumarins incorporating hydroxy-, chloro- and/or chloromethyl-moieties in positions 3-, 4-, 6- and 7- of the heterocyclic ring were investigated for the inhibition of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). These coumarins were very weak or ineffective as inhibitors of the house-keeping, offtarget isoforms CA I and II, but showed effective, submicromolar inhibition of the transmembrane, tumor-associated isoforms CA IX and XII. The nature and position of the groups substituting the coumarin ring greatly influenced CA inhibitory properties. 6-Hydroxycoumarin showed KIs >100 μM against CA I and II, of 0.198 μM against CA IX and of 0.683 μM against CA XII, being thus a selective, efficient inhibitor for the tumor-associated over cytosolic isoforms. These compounds are also excellent leads for designing isoform-selective enzyme inhibitors.  相似文献   

15.
We have investigated the enzyme inhibition characteristics of a natural product (NP)-based phenolic library against a panel of human carbonic anhydrases (hCAs, EC 4.2.1.1) which included hCAs I and II (cytosolic) and hCA VA/VB (mitochondrial isoforms). Most of these compounds were weak, micromolar inhibitors of the two cytosolic hCAs (KIs >10 μM) but showed good hCA VA/VB inhibitory activity with inhibition constants in the range of 70–125 nM. The selectivity ratios for inhibiting the mitochondrial over the cytosolic isoforms for these phenol derivatives were in the range of 120–3800, making them the most isoform-selective compounds for inhibiting hCA VA/VB known to date. The CA VA/VB enzymes are involved in biosynthetic processes such as gluconeogenesis, lipogenesis and ureagenesis, and no pharmacological inhibitors with good selectivity are currently available. Thus the NP inhibitors identified during these studies are excellent leads for obtaining even more effective compounds that selectively target mitochondrial hCAs, and also have the potential to be used as tools for understanding the physiological processes that are regulated by the two mitochondrial CA isoforms.  相似文献   

16.
Based on recent reports that several (E)-8-styrylcaffeinyl analogues are potent reversible inhibitors of monoamine oxidase B (MAO-B), a series of 8-benzyloxycaffeinyl analogues were synthesized and evaluated as inhibitors of baboon liver MAO-B and recombinant human MAO-A and -B. The 8-benzyloxycaffeinyl analogues were found to inhibit reversibly both MAO isoforms with enzyme–inhibitor dissociation constants (Ki values) ranging from 0.14 to 1.30 μM for the inhibition of human MAO-A, and 0.023–0.59 μM for the inhibition of human MAO-B. The most potent MAO-A inhibitor was 8-(3-methylbenzyloxy)caffeine while 8-(3-bromobenzyloxy)caffeine was the most potent MAO-B inhibitor. The analogues inhibited human and baboon MAO-B with similar potencies. A quantitative structure–activity relationship (QSAR) study indicated that the MAO-B inhibition potencies of the 8-benzyloxycaffeinyl analogues are dependent on the Hansch lipophilicity (π) and Hammett electronic (σ) constants of the substituents at C-3 of the benzyloxy ring. Electron-withdrawing substituents with a high degree of lipophilicity enhance inhibition potency. These results are discussed with reference to possible binding orientations of the inhibitors within the active site cavities of MAO-A and -B.  相似文献   

17.
Sildenafil citrate, a phosphodiesterase-5 (PDE5) inhibitor widely used for the treatment of erectile dysfunction was investigated for its interaction with the zinc-enzyme carbonic anhydrase (CA, EC 4.2.1.1), as it has in its molecule a piperazine moiety also found in some CA activators (CAAs). Sildenafil was a potent, low micromolar activator of several CA isozymes, such as CA I, VA and VI (KAs in the range of 1.08–6.54 μM), and activated slightly less the isoforms CA III, IV and VA (KAs of 13.4–16.8 μM). CA isozymes II, IX, XIII and XIV showed activation constants in the range of 27.5–34.0 μM, whereas the least activated isoforms were CA VII and XII (KAs of 72.9–73.0 μM). Sildenafil citrate was also given orally to Sprague-Dawley rats at 1 mg/kg body weight. Red blood cell CA activity was inhibited in the treated animals at 3–5 h post-administration (in the range of 60–85%), probably due to NO/nitrite formed by PDE5 inhibition or by another, unknown mechanism. Whether CA activation by sildenafil has clinical consequences in humans is beyond the scope of the present work and warrants further studies.  相似文献   

18.
The natural product dodoneine (a dihydropyranone phenolic compound), extracted from African mistletoe Agelanthus dodoneifolius, has been investigated as inhibitor of several human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms. By using superacid chemistry, analogues of the lactone phenolic hybrid lead compound have been synthesized and tested as CA inhibitors. Small chemical modifications of the basic scaffold revealed strong changes in the selectivity profile against different CA isoforms. These new compounds selectively inhibited isoforms CA I (KIs in the range of 0.13–0.76 μM), III (KIs in the range of 5.13–10.80 μM), XIII (KIs in the range of 0.34–0.96 μM) and XIV (KIs in the range of 2.44–7.24 μM), and can be considered as new leads, probably acting as non-zinc-binders, similar to other phenols/lactones investigated earlier.  相似文献   

19.
An inibition study of the β-carbonic anhydrase (CA, EC 4.2.1.1) DmBCA from the insect Drosophila melanogaster with sulfonamides and sulfamates is reported. Among the panel of 40 investigated compounds, the best DmBCA inhibitors were the sulfonylated benzenesulfonamides and ethoxzolamide, which showed inhibition constants in the range of 65.3–138 nM. Methazolamide and sulthiame were also effective inhibitors with KIs ranging between 237 and 249 nM, whereas most of the simple aromatic/heterocyclic sulfonamides showed inhibition constants in the range of 0.47–6.40 μM. Topiramate, zonisamide and saccharine did not inhibit DmBCA. As orthologs of this mitochondrial CA are found in many insect species involved in the spread of various diseases, inhibitors interfering with their activity may be of interest for developing insecticides with an alternative mechanism of action to the presently used agents, for which many insects developed extensive resistance.  相似文献   

20.
A series of novel sulfamides incorporating the dopamine scaffold were synthesized. Reaction of amines and tert-butyl-alcohol/benzyl alcohol in the presence of chlorosulfonyl isocyanate (CSI) afforded sulfamoyl carbamates, which were converted to the title compounds by treatment with trifluoroacetic acid or by palladium-catalyzed hydrogenolysis. Inhibition of six α-carbonic anhydrases (CAs, EC 4.2.1.1), that is, CA I, CA II, CA VA, CA IX, CA XII and CA XIV, and two β-CAs from Candida glabrata (CgCA) and Mycobacterium tuberculosis (Rv3588) with these sulfamides was investigated. All CA isozymes were inhibited in the low micromolar to nanomolar range by the dopamine sulfamide analogues. Kis were in the range of 0.061–1.822 μM for CA I, 1.47–2.94 nM for CA II, 2.25–3.34 μM for CA VA, 0.041–0.37 μM for CA IX, 0.021–1.52 μM for CA XII, 0.007–0.219 μM for CA XIV, 0.35–5.31 μM for CgCA and 0.465–4.29 μM for Rv3588. The synthesized sulfamides may lead to inhibitors targeting medicinally relevant CA isoforms with potential applications as antiepileptic, antiobesity antitumor agents or anti-infective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号