首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]CI-994, a radioactive isotopologue of the benzamide CI-994, a class I histone deacetylase inhibitor (HDACi), was evaluated as an autoradiography probe for ex vivo labeling and localizing of class I HDAC (isoforms 1–3) in the rodent brain. After protocol optimization, up to 80% of total binding was attributed to specific binding. Notably, like other benzamide HDACi, [3H]CI-994 exhibits slow binding kinetics when measured in vitro with isolated enzymes and ex vivo when used for autoradiographic mapping of HDAC1–3 density. The regional distribution and density of HDAC1–3 was determined through a series of saturation and kinetics experiments. The binding properties of [3H]CI-994 to HDAC1–3 were characterized and the data were used to determine the regional Bmax of the target proteins. Kd values, determined from slice autoradiography, were between 9.17 and 15.6 nM. The HDAC1–3 density (Bmax), averaged over whole brain sections, was of 12.9 picomol · mg−1 protein. The highest HDAC1–3 density was found in the cerebellum, followed by hippocampus and cortex. Moderate to low receptor density was found in striatum, hypothalamus and thalamus. These data were correlated with semi-quantitative measures of each HDAC isoform using western blot analysis and it was determined that autoradiographic images most likely represent the sum of HDAC1, HDAC2, and HDAC3 protein density. In competition experiments, [3H]CI-994 binding can be dose-dependently blocked with other HDAC inhibitors, including suberoylanilide hydroxamic acid (SAHA). In summary, we have developed the first known autoradiography tool for imaging class I HDAC enzymes. Although validated in the CNS, [3H]CI-994 will be applicable and beneficial to other target tissues and can be used to evaluate HDAC inhibition in tissues for novel therapies being developed. [3H]CI-994 is now an enabling imaging tool to study the relationship between diseases and epigenetic regulation.  相似文献   

2.
3.
The polyphenolic alcohol resveratrol has demonstrated promising activities for the prevention and treatment of cancer. Different modes of action have been described for resveratrol including the activation of sirtuins, which represent the class III histone deacetylases (HDACs). However, little is known about the activity of resveratrol on the classical HDACs of class I, II and IV, although these classes are involved in cancer development or progression and inhibitors of HDACs (HDACi) are currently under investigation as promising novel anticancer drugs. We could show by in silico docking studies that resveratrol has the chemical structure to inhibit the activity of different human HDAC enzymes. In vitro analyses of overall HDAC inhibition and a detailed HDAC profiling showed that resveratrol inhibited all eleven human HDACs of class I, II and IV in a dose-dependent manner. Transferring this molecular mechanism into cancer therapy strategies, resveratrol treatment was analyzed on solid tumor cell lines. Despite the fact that hepatocellular carcinoma (HCC) is known to be particularly resistant against conventional chemotherapeutics, treatment of HCC with established HDACi already has shown promising results. Testing of resveratrol on hepatoma cell lines HepG2, Hep3B and HuH7 revealed a dose-dependent antiproliferative effect on all cell lines. Interestingly, only for HepG2 cells a specific inhibition of HDACs and in turn a histone hyperacetylation caused by resveratrol was detected. Additional testing of human blood samples demonstrated a HDACi activity by resveratrol ex vivo. Concluding toxicity studies showed that primary human hepatocytes tolerated resveratrol, whereas in vivo chicken embryotoxicity assays demonstrated severe toxicity at high concentrations. Taken together, this novel pan-HDACi activity opens up a new perspective of resveratrol for cancer therapy alone or in combination with other chemotherapeutics. Moreover, resveratrol may serve as a lead structure for chemical optimization of bioavailability, pharmacology or HDAC inhibition.  相似文献   

4.
The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation. There are 18 HDACs in humans. These enzymes are not redundant in function. Eleven of the HDACs are zinc dependent, classified on the basis of homology to yeast HDACs: Class I includes HDACs 1, 2, 3, and 8; Class IIA includes HDACs 4, 5, 7, and 9; Class IIB, HDACs 6 and 10; and Class IV, HDAC 11. Class III HDACs, sirtuins 1–7, have an absolute requirement for NAD+, are not zinc dependent and generally not inhibited by compounds that inhibit zinc dependent deacetylases. In addition to histones, HDACs have many nonhistone protein substrates which have a role in regulation of gene expression, cell proliferation, cell migration, cell death, and angiogenesis. HDAC inhibitors (HDACi) have been discovered of different chemical structure. HDACi cause accumulation of acetylated forms of proteins which can alter their structure and function. HDACi can induce different phenotypes in various transformed cells, including growth arrest, apoptosis, reactive oxygen species facilitated cell death and mitotic cell death. Normal cells are relatively resistant to HDACi induced cell death. Several HDACi are in various stages of development, including clinical trials as monotherapy and in combination with other anti‐cancer drugs and radiation. The first HDACi approved by the FDA for cancer therapy is suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza), approved for treatment of cutaneous T‐cell lymphoma. J. Cell. Biochem. 107: 600–608, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Although histone deacetylase inhibitors (HDACi) have shown promising antitumor effects in specific types of blood cancer, their effects on solid tumors are limited. Previously, we developed LMK235 (5), a class I and class IIb preferential HDACi with chemosensitizing effects on breast cancer, ovarian cancer and HNSCC. Based on its promising effects on solid tumor cells, we modified the cap group of 5 to improve its anticancer activity. The tri- and dimethoxy-phenyl substituted compounds 13a and 13d turned out to be the most potent HDAC inhibitors of this study. The isoform profiling revealed a dual HDAC2/HDAC6 inhibition profile, which was confirmed by the acetylation of α-tubulin and histone H3 in Cal27 and Cal27CisR. In combination with cisplatin, both compounds enhanced the cisplatin-induced cytotoxicity via caspase-3/7 activation. The effect was more pronounced in the cisplatin resistant subline Cal27CisR. The pretreatment with 13d resulted in a complete resensitisation of Cal27CisR with IC50 values in the range of the parental cell line. Therefore, 13d may serve as an epigenetic tool to analyze and modulate the cisplatin resistance of solid tumors.  相似文献   

6.
Histone deacetylase (HDAC) inhibitors have received considerable attention as potential therapeutics for a variety of cancers and neurological disorders. Recent publications on a class of pimelic diphenylamide HDAC inhibitors have highlighted their promise in the treatment of the neurodegenerative diseases Friedreich's ataxia and Huntington's disease, based on efficacy in cell and mouse models. These studies' authors have proposed that the unique action of these compounds compared to hydroxamic acid-based HDAC inhibitors results from their unusual slow-on/slow-off kinetics of binding, preferentially to HDAC3, resulting in a distinctive pharmacological profile and reduced toxicity. Here, we evaluate the HDAC subtype selectivity, cellular activity, absorption, distribution, metabolism and excretion (ADME) properties, as well as the central pharmacodynamic profile of one such compound, HDACi 4b, previously described to show efficacy in vivo in the R6/2 mouse model of Huntington's disease. Based on our data reported here, we conclude that while the in vitro selectivity and binding mode are largely in agreement with previous reports, the physicochemical properties, metabolic and p-glycoprotein (Pgp) substrate liability of HDACi 4b render this compound suboptimal to investigate central Class I HDAC inhibition in vivo in mouse per oral administration. A drug administration regimen using HDACi 4b dissolved in drinking water was used in the previous proof of concept study, casting doubt on the validation of CNS HDAC3 inhibition as a target for the treatment of Huntington's disease. We highlight physicochemical stability and metabolic issues with 4b that are likely intrinsic liabilities of the benzamide chemotype in general.  相似文献   

7.
8.
9.
Histone deacetylases (HDAC) are metal-dependent enzymes and considered as important targets for cell functioning. Particularly, higher expression of class I HDACs is common in the onset of multiple malignancies which results in deregulation of many target genes involved in cell growth, differentiation and survival. Although substantial attempts have been made to control the irregular functioning of HDACs by employing various inhibitors with high sensitivity towards transformed cells, limited success has been achieved in epigenetic cancer therapy. Here in this study, we used ligand-based pharmacophore and 2-dimensional quantitative structure activity relationship (QSAR) modeling approaches for targeting class I HDAC isoforms. Pharmacophore models were generated by taking into account the known IC50 values and experimental energy scores with extensive validations. The QSAR model having an external R2 value of 0.93 was employed for virtual screening of compound libraries. 10 potential lead compounds (C1-C10) were short-listed having strong binding affinities for HDACs, out of which 2 compounds (C8 and C9) were able to interact with all members of class I HDACs. The potential binding modes of HDAC2 and HDAC8 to C8 were explored through molecular dynamics simulations. Overall, bioactivity and ligand efficiency (binding energy/non-hydrogen atoms) profiles suggested that proposed hits may be more effective inhibitors for cancer therapy.  相似文献   

10.
A series of α,β-unsaturated hydroxamic acid derivatives as novel HDAC inhibitors (HDACi) with structural modifications of the connecting unit and the CAP group was synthesized. The in vitro evaluation against the human cancer cell lines A2780 and Cal27 identified 6e and 7j as the most potent compounds regarding HDAC inhibitory activity and inhibition of proliferation. Isoform profiling against HDAC2, 4, 6 and 8 revealed a preference for HDAC2 and 6 for both compounds in contrast to the pan HDACi panobinostat. 6e and 7j enhanced significantly cisplatin-induced cytotoxicity in a combination treatment mediated by increased apoptosis induction and caspase-3/7 activation. The interaction between 6e or 7j and cisplatin was highly synergistic and more pronounced for the cisplatin resistant subline Cal27CisR. IC50 values of cisplatin were even lower in Cal27CisR pretreated with 6e or 7j than for the parental cell line Cal27. Based on our findings, the novel dual class I/HDAC6 inhibitors could serve as an option to overcome cisplatin resistance with fewer side effects in comparison to panobinostat.  相似文献   

11.
A novel series of non-hydroxamate HDAC inhibitors (HDACi) showing a uracil group at the left and a 2-aminoanilide/2-aminoanilide-like portion at the right head have been reported. In particular, the new compounds incorporating a 2-aminoanilide moiety behaved as class I-selective HDACi. Compound 8, the most potent and class I-selective, showed weak apoptosis (higher than MS-275) joined to cytodifferentiating activity on U937 cells. Surprisingly, the highest differentiation was observed with 13, through an effect that seems to be unrelated to HDAC inhibition.  相似文献   

12.
13.
14.
Aroyl-pyrrolyl-hydroxy-amides (APHAs) are a class of synthetic HDAC inhibitors described by us since 2001. Through structure-based drug design, two isomers of the APHA lead compound 1, the 3-(2-benzoyl-1-methyl-1H-pyrrol-4-yl)-N-hydroxy-2-propenamide 2 and the 3-(2-benzoyl-1-methyl-1H-pyrrol-5-yl)-N-hydroxy-2-propenamide 3 (iso-APHAs) were designed, synthesized and tested in murine leukemia cells as antiproliferative and cytodifferentiating agents. To improve their HDAC activity and selectivity, chemical modifications at the benzoyl moieties were investigated and evaluated using three maize histone deacetylases: HD2, HD1-B (class I human HDAC homologue), and HD1-A (class II human HDAC homologue). Docking experiments on HD1-A and HD1-B homology models revealed that the different compounds selectivity profiles could be addressed to different binding modes as observed for the reference compound SAHA. Smaller hydrophobic cap groups improved class II HDAC selectivity through the interaction with HD1-A Asn89-Ser90-Ile91, while bulkier aromatic substituents increased class I HDAC selectivity. Taking into account the whole enzyme data and the functional test results, the described iso-APHAs showed a behaviour of class I/IIb HDACi, with 4b and 4i preferentially inhibiting class IIb and class I HDACs, respectively. When tested in the human leukaemia U937 cell line, 4i showed altered cell cycle (S phase arrest), joined to high (51%) apoptosis induction and significant (21%) differentiation activity.  相似文献   

15.
Protein acetylation status results from a balance between histone acetyltransferase and histone deacetylase (HDAC) activities. Alteration of this balance leads to a disruption of cellular integrity and participates in the development of numerous diseases, including cancer. Therefore, modulation of these activities appears to be a promising approach for anticancer therapy. Histone deacetylase inhibitors (HDACi) are epigenetically active drugs that induce the hyperacetylation of lysine residues within histone and non-histone proteins, thus affecting gene expression and cellular processes such as protein–protein interactions, protein stability, DNA binding and protein sub-cellular localization. Therefore, HDACi are promising anti-tumor agents as they may affect the cell cycle, inhibit proliferation, stimulate differentiation and induce apoptotic cell death. Over the last 30 years, numerous synthetic and natural products, including a broad range of dietary compounds, have been identified as HDACi. This review focuses on molecules from natural origins modulating HDAC activities and presenting promising anticancer activities.  相似文献   

16.
17.
18.
Histone deacetylase inhibitors (HDACi) pleiotropy is largely due to their nonselective inhibition of various cellular HDAC isoforms. Connecting inhibition of a specific isoform to biological responses and/or phenotypes is essential toward deconvoluting HDACi pleiotropy. The contribution of classes I and II HDACs to the antileishmanial activity of HDACi was investigated using the amastigote and promastigote forms of Leishmania donovani. We observed that the antileishmanial activities of HDACi are largely due to the inhibition of HDAC6-like activity. This observation could facilitate the development of HDACi as antileishmanial agents.  相似文献   

19.
Methotrexate (MTX) is a dihydrofolate reductase (DHFR) inhibitor widely used for treating human cancers, and overexpression of histone deacetylase (HDAC) is usually found in tumors. HDAC inhibitors (HDACi) can reactivate tumor suppressor genes and serve as potential anti-cancer drugs. In this study, we found that MTX shared structural similarity with some HDACi and molecular modeling showed that MTX indeed docks into the active site of HDLP, a bacterial homologue of HDAC. Subsequent in vitro assay demonstrated MTX’s inhibition on HDAC activity in human cancer cells. The global acetylation of histone H3 was also induced by MTX. Moreover, MTX inhibited immunoprecipitated HDAC1/2 activity but not their protein levels. This study provides evidence that MTX inhibits HDAC activity.  相似文献   

20.
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号