首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of Janus kinase (JAK) inhibitors was discovered using a rationally designed pyrrolo[1,2-b]pyridazine-3-carboxamide scaffold. Preliminary studies identified (R)-(2,2-dimethylcyclopentyl)amine as a preferred C4 substituent on the pyrrolopyridazine core (3b). Incorporation of amino group to 3-position of the cyclopentane ring resulted in a series of JAK3 inhibitors (4g4j) that potently inhibited IFNγ production in an IL2-induced whole blood assay and displayed high functional selectivity for JAK3–JAK1 pathway relative to JAK2. Further modifications led to the discovery of an orally bioavailable (2-fluoro-2-methylcyclopentyl)amino analogue 5g which is a nanomolar inhibitor of both JAK3 and TYK2, functionally selective for the JAK3–JAK1 pathway versus JAK2, and active in a human whole blood assay.  相似文献   

2.
Janus kinases (JAKs) regulate various cancers and immune responses and are targets for the treatment of cancers and immune diseases. A new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amino derivatives were synthesized and optimized by introducing a functional 3,5-disubstituted-1H-pyrazole moiety into the C-3 moiety of pyrazole template, and then were biologically evaluated as potent Janus kinase 2 (JAK2) inhibitors. Among these molecules, inhibitors 11f, 11g, 11h and 11k displayed strong activity and selectivity against the JAK2 kinase, with IC50 values of 7.2?nM, 6.5?nM, 8.0?nM and 9.7?nM, respectively. In particular, the cellular inhibitory assay and western blot analysis further support the JAK2 selectivity of compound 11g also in cells. Furthermore, compound 11g also exhibited potent inhibitory activity in lymphocytes proliferation assay and delayed hypersensitivity assay. Taken together, the novel JAK2 selective inhibitors discovered in this study may be potential lead compounds for new drug discovery via further development of more potent and selective JAK2 inhibitors.  相似文献   

3.
JAKs inhibitors were widely applied in the treatment of immunodeficiency diseases, inflammation and cancers. We designed and synthesized a novel series of 4-aminopyrazole derivatives, which showed inhibitory potency against various JAKs. The in vitro protein kinase inhibition experiment indicated that compounds 17k, 17l, 17m and 17n could inhibit JAKs effectively. Among them, compound 17m possessed the highest protein kinase inhibitory rates (%) at 10 μM, which were 97, 96 and 100 to JAK1, JAK2 and JAK3, respectively. Further evaluation revealed that the IC50 values of 17m against JAK1, JAK2 and JAK3 were 0.67 μM, 0.098 μM and 0.039 μM, respectively. Moreover, western blotting results showed compound 17m could inhibit the phosphorylation of JAK2 in Hela cells effectively. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

4.
Janus kinases (JAKs) play a key role in the proliferation, apoptosis and differentiation of immune cells, and JAKs are considered as an attractive target for the treatment of inflammatory and autoimmune diseases. Here we show the design and optimization of pyrimidine-4,6-diamine derivatives as selectivity JAK3 inhibitors. Compound 11e, which might interact with unique cysteine (Cys909) residue in JAK3, exhibited excellent JAK3 inhibitory activity (IC50?=?2.1?nM) and high JAK kinase selectivity. In cellular assay, 11e showed moderate potency inhibiting IL-2-stimulated T cell proliferation. The data supports the further development of novel JAKs inhibitors.  相似文献   

5.
We report the discovery of a novel series of ATP-competitive Janus kinase 3 (JAK3) inhibitors based on the 5H-pyrrolo[2,3-b]pyrazine scaffold. The initial leads in this series, compounds 1a and 1h, showed promising potencies, but a lack of selectivity against other isoforms in the JAK family. Computational and crystallographic analysis suggested that the phenyl ether moiety possessed a favorable vector to achieve selectivity. Exploration of this vector resulted in the identification of 12b and 12d, as potent JAK3 inhibitors, demonstrating improved JAK family and kinase selectivity.  相似文献   

6.
The Janus kinase (JAK) family of tyrosine kinases has been proven to provide targeted immune modulation. Orally available JAK inhibitors have been used for the treatment of immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). Here, we report the design, synthesis and biological evaluation of 4-(4,5,6,7-tetrahydrofuro[3,2-c]pyridin-2-yl) pyrimidin-2-amino derivatives as JAK inhibitors. Systematic structure–activity relationship studies led to the discovery of compound 7j, which strongly inhibited the four isoforms of JAK kinases. Molecular modeling rationalized the importance of cyanoacetyl and phenylmorpholine moieties. The in vivo investigation indicated that compound 7j possessed favorable pharmacokinetic properties and displayed slightly better anti-inflammatory efficacy than tofacitinib at the same dosage. Accordingly, compound 7j was advanced into preclinical development.  相似文献   

7.
Janus kinases (JAKs) regulate various inflammatory and immune responses and are targets for the treatment of inflammatory and immune diseases. Here we report the discovery and optimization of 1H-pyrazolo[3,4-d]pyrimidin-4-amino as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Our optimization study gave compound 12a, which exhibited potent JAK3 inhibitory activity (IC50 of 6.2?nM) as well as excellent JAK kinase selectivity (>60-fold). In cellular assay, 12a exhibited potent immunomodulating effect on IL-2-stimulated T cell proliferation (IC50 of 9.4?μM). Further, compound 12a showed efficacy in delayed hypersensitivity assay. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

8.
Pictet–Spengler condensation of aldehydes or alpha-keto-esters with 4-(2-anilinophenyl)-7-azaindole (11) or deazapurine (12) gave high yields of the 3,4-fused cyclic compounds. SAR studies, by varying the substituted benzaldehyde components, lead to the discovery of a series of potent JAK2 kinase inhibitors.  相似文献   

9.
Aiming to develop potent JAK inhibitors, two series of 4-(1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine derivatives (8a–8p and 11a–11i) were designed and synthesized by coalescing various N-acylpiperidine motifs with baricitinib. The pharmacological results based on enzymatic and cellular assays identified the optimized compound 11e, which exerted over 90% inhibition rates against JAK1 and JAK2, and displayed the most compelling anti-inflammatory efficacy superior to baricitinib by inhibiting NO generation from LPS-induced RAW264.7 macrophages. Importantly, low cytotoxity of 11e was revealed by the IC50 value of 88.2 μM against normal RAW264.7 cells. The binding mode of 11e with JAK1 and JAK2 identified the essential structural bases in accord with SARs analysis. Furthermore, cellular morphology observation and western blot analysis disclosed the ability of 11e to relieve cells inflammatory damage by significantly down-regulating LPS-induced high expression of JAK1, JAK2, as well as pro cytokine IL-1β. Together, 11e was verified as a promising lead for JAK inhibitors for the treatment of inflammatory diseases.  相似文献   

10.
We designed a series of anilino-indoylmaleimides based on structural elements from literature JAK3 inhibitors 3 and 4, and our lead 5. These new compounds were tested as inhibitors of JAKs 1, 2 and 3 and TYK2 for therapeutic intervention in rheumatoid arthritis (RA). Our requirements, based on current scientific rationale for optimum efficacy against RA with reduced side effects, was for potent, mixed JAK1 and 3 inhibition, and selectivity over JAK2. Our efforts yielded a potent JAK3 inhibitor 11d and its eutomer 11e. These compounds were highly selective for inhibition of JAK3 over JAK2 and TYK. The compounds displayed only modest JAK1 inhibition.  相似文献   

11.
A novel class of Janus tyrosine kinase 3 (JAK3) inhibitors based on a 2-benzimidazoylpurinone core structure is described. Through substitution of the benzimidazoyl moiety and optimization of the N-9 substituent of the purinone, compound 24 was identified incorporating a chroman-based functional group. Compound 24 shows excellent kinase activity, good oral bioavailability and demonstrates efficacy in an acute mechanistic mouse model through inhibition of interleukin-2 (IL-2) induced interferon-γ (INF-γ) production.  相似文献   

12.
This communication discusses the discovery of novel reverse tricyclic pyridones as inhibitors of Janus kinase 2 (JAK2). By using a kinase cross screening approach coupled with molecular modeling, a unique inhibitor–water interaction was discovered to impart excellent broad kinase selectivity. Improvements in intrinsic potency were achieved by utilizing a rapid library approach, while targeted structural changes to lower lipophilicity led to improved rat pharmacokinetics. This multi-pronged approach led to the identification of 31, which demonstrated encouraging rat pharmacokinetics, in vivo potency, and excellent off-target kinase selectivity.  相似文献   

13.
Small molecule JAK inhibitors have been demonstrated efficacy in rheumatoid arthritis, inflammatory bowel disease, and psoriasis with the approval of several drugs. Aiming to develop potent JAK1/2 inhibitors, two series of triazolo [1,5-a] pyridine derivatives were designed and synthesized by various strategies. The pharmacological results identified the optimized compounds J-4 and J-6, which exerted high potency against JAK1/2, and selectivity over JAK3 in enzyme assays. Furthermore, J-4 and J-6 effectively suppressed proliferation of JAK1/2 high-expression BaF3 cells accompanied with acceptable metabolic stability in liver microsomes. Therefore, J-4 and J-6 might serve as promising JAK1/2 inhibitors for further investigation.  相似文献   

14.
Members of the Janus kinase (JAK) family are potential therapeutic targets. Abnormal signaling by mutant JAK2 is related to hematological malignancy, such as myeloproliferative neoplasms (MPNs), and tyrosine kinase inhibitor (TKI)-resistance in non-small cell lung cancer (NSCLC). We discovered a potent and highly selective inhibitor of JAK2 over JAK1 and -3 based on the structure of 4-(2,5-triazole)-pyrrolopyrimidine. Among all triazole compounds tested, 2,5-triazole regioisomers more effectively inhibited JAK2 kinase activity than isomers with substitutions of various alkyl groups at the R2 position, except for methyl-substituted 1,5-triazole, which was more potent than the corresponding 1,4- and 2,5-triazoles. None of the synthesized 1,4-isomers inhibited all three JAK family members. Compounds with phenyl or tolyl group substituents at the R1 position were completely inactive compared with the corresponding analogues with a methyl substituted at the R1 position. As a result of this structure–activity relationship, 54, which is substituted with a cyclopropylmethyl moiety, exhibited significant inhibitory activity and selectivity (IC50 = 41.9 nM, fold selectivity JAK1/2 10.6 and JAK3/2 58.1). Compound 54 also exhibited an equivalent inhibition of wild type JAK2 and the V617F mutant. Moreover, 54 inhibited the proliferation of HEL 92.1.7 cells, which carry JAK2 V617F, and gefitinib-resistant HCC827 cells. Compound 54 also suppressed STAT3 phosphorylation at Y705.  相似文献   

15.
We report the discovery of a series of 4-aryl-2-aminoalkylpyrimidine derivatives as potent and selective JAK2 inhibitors. High throughput screening of our in-house compound library led to the identification of hit 1, from which optimization resulted in the discovery of highly potent and selective JAK2 inhibitors. Advanced lead 10d demonstrated a significant dose-dependent pharmacodynamic and antitumor effect in a mouse xenograft model. Based upon the desirable profile of 10d (XL019) it was advanced into clinical trials.  相似文献   

16.
Janus kinases (JAKs) are considered promising targets for the treatment of autoimmune diseases including rheumatoid arthritis (RA) due to their important role in multiple cytokine receptor signaling pathways. Recently, several JAK inhibitors have been developed for the treatment of RA. Here, we describe the identification of the novel orally bioavailable JAK inhibitor 18, peficitinib (also known as ASP015K), which showed moderate selectivity for JAK3 over JAK1, JAK2, and TYK2 in enzyme assays. Chemical modification at the C4-position of lead compound 5 led to a large increase in JAK inhibitory activity and metabolic stability in liver microsomes. Furthermore, we determined the crystal structures of JAK1, JAK2, JAK3, and TYK2 in a complex with peficitinib, and revealed that the 1H-pyrrolo[2,3–b]pyridine-5-carboxamide scaffold of peficitinib forms triple hydrogen bonds with the hinge region. Interestingly, the binding modes of peficitinib in the ATP-binding pockets differed among JAK1, JAK2, JAK3, and TYK2. WaterMap analysis of the crystal structures suggests that unfavorable water molecules are the likely reason for the difference in orientation of the 1H-pyrrolo[2,3-b]pyridine-5-carboxamide scaffold to the hinge region among JAKs.  相似文献   

17.
Inhibition of more than one pathway in a cancer cell with a single molecule could result in better therapies with less complex dosing regimens. In this work multi-component ligands have been prepared by joining together key pharmacophores of two different enzyme inhibitors in a way which increases potency against the individual pathways. Selective JAK1/2 inhibitor, ruxolitinib (3), and pan-HDAC inhibitor vorinostat (4) were linked together by a single nitrogen atom to create a new series of compounds with very potent JAK2 and HDAC6 inhibition with selectivity against HDAC1. A preferred compound, 13b, had unprecedented sub-nanomolar JAK2 potency with an IC50 of 41?pM and a sub-nanomolar IC50 against HDAC6 of 200?pM. Binding models show a good fit into both JAK2 and HDAC6.  相似文献   

18.
Current JAK2 inhibitors used for myeloproliferative neoplasms (MPN) treatment are not specific enough to selectively suppress aberrant JAK2 signalling and preserve physiological JAK2 signalling. We tested whether combining a JAK2 inhibitor with a series of serine threonine kinase inhibitors, targeting nine signalling pathways and already used in clinical trials, synergized in inhibiting growth of haematopoietic cells expressing mutant and wild‐type forms of JAK2 (V617F) or thrombopoietin receptor (W515L). Out of 15 kinase inhibitors, the ZSTK474 phosphatydylinositol‐3′‐kinase (PI3K) inhibitor molecule showed strong synergic inhibition by Chou and Talalay analysis with JAK2 and JAK2/JAK1 inhibitors. Other pan‐class I, but not gamma or delta specific PI3K inhibitors, also synergized with JAK2 inhibitors. Synergy was not observed in Bcr‐Abl transformed cells. The best JAK2/JAK1 and PI3K inhibitor combination pair (ruxolitinib and GDC0941) reduces spleen weight in nude mice inoculated with Ba/F3 cells expressing TpoR and JAK2 V617F. It also exerted strong inhibitory effects on erythropoietin‐independent erythroid colonies from MPN patients and JAK2 V617F knock‐in mice, where at certain doses, a preferential inhibition of JAK2 V617F mutated progenitors was detected. Our data support the use of a combination of JAK2 and pan‐class I PI3K inhibitors in the treatment of MPNs.  相似文献   

19.
Myelofibrosis (MF) is a life-threatening blood cancer characterized by progressive bone marrow fibrosis, splenomegaly, cytopenias, and debilitating constitutional symptoms. Abnormal expression and activity of a number of proinflammatory cytokines are associated with MF, in which immune dysregulation is pronounced as evidenced by dysregulation of several immune and inflammation genes. The discovery of the Janus kinase 2 (JAK2) V617F mutation has led to the development of a number of JAK1/2 inhibitors in the treatment of MF and similar neoplasms. Here, the role of cytokines in MF initiation and progression is discussed, the impact of current therapies is reviewed, and new combination therapies are proposed, such as JAK1/2 inhibitors with interferons, statins, and epigenetic modifiers for patients with MF and related neoplasms.  相似文献   

20.

Background

The non-receptor tyrosine kinase JAK2 is implicated in a group of myeloproliferative neoplasms including polycythemia vera, essential thrombocythemia, and primary myelofibrosis. JAK2-selective inhibitors are currently being evaluated in clinical trials. Data from drug-resistant chronic myeloid leukemia patients demonstrate that treatment with a small-molecule inhibitor generates resistance via mutation or amplification of BCR-ABL. We hypothesize that treatment with small molecule inhibitors of JAK2 will similarly generate inhibitor-resistant mutants in JAK2.

Methodology

In order to identify inhibitor-resistant JAK2 mutations a priori, we utilized TEL-JAK2 to conduct an in vitro random mutagenesis screen for JAK2 alleles resistant to JAK Inhibitor-I. Isolated mutations were evaluated for their ability to sustain cellular growth, stimulate downstream signaling pathways, and phosphorylate a novel JAK2 substrate in the presence of inhibitor.

Conclusions

Mutations were found exclusively in the kinase domain of JAK2. The panel of mutations conferred resistance to high concentrations of inhibitor accompanied by sustained activation of the Stat5, Erk1/2, and Akt pathways. Using a JAK2 substrate, enhanced catalytic activity of the mutant JAK2 kinase was observed in inhibitor concentrations 200-fold higher than is inhibitory to the wild-type protein. When testing the panel of mutations in the context of the Jak2 V617F allele, we observed that a subset of mutations conferred resistance to inhibitor, validating the use of TEL-JAK2 in the initial screen. These results demonstrate that small-molecule inhibitors select for JAK2 inhibitor-resistant alleles, and the design of next-generation JAK2 inhibitors should consider the location of mutations arising in inhibitor-resistant screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号