首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycine serves as a neurotransmitter in spinal cord and brain stem, where it activates inhibitory glycine receptors. In addition, it serves as an essential co-agonist of excitatory N-methyl-d-aspartate receptors. In the central nervous system, extracellular glycine concentrations are regulated by two specific glycine transporters (GlyTs), GlyT1 and GlyT2. Here, we determined the relative transport activities and protein levels of GlyT1 and GlyT2 in membrane preparations from mouse brain stem and spinal cord at different developmental stages. We report that early postnatally (up to postnatal day P5) GlyT1 is the predominant transporter isoform responsible for a major fraction of the GlyT-mediated [(3)H]glycine uptake. At later stages (≥ P10), however, the transport activity and expression of GlyT2 increases, and in membrane fractions from adult mice both GlyTs contribute about equally to glycine uptake. These alterations in the activities and expression profiles of the GlyTs suggest that the contributions of GlyT1 and GlyT2 to the regulation of extracellular glycine concentrations at glycinergic synapses changes during development.  相似文献   

2.
The glycine transporter subtype 1 (GlyT1) is widely expressed in astroglial cells throughout the mammalian central nervous system and has been implicated in the regulation of N-methyl-D-aspartate (NMDA) receptor activity. Newborn mice deficient in GlyT1 are anatomically normal but show severe motor and respiratory deficits and die during the first postnatal day. In brainstem slices from GlyT1-deficient mice, in vitro respiratory activity is strikingly reduced but normalized by the glycine receptor (GlyR) antagonist strychnine. Conversely, glycine or the GlyT1 inhibitor sarcosine suppress respiratory activity in slices from wild-type mice. Thus, during early postnatal life, GlyT1 is essential for regulating glycine concentrations at inhibitory GlyRs, and GlyT1 deletion generates symptoms found in human glycine encephalopathy.  相似文献   

3.
Glycine transporters are members of the Na+/Cl dependent transporter gene family and play crucial roles in regulating inhibitory as well as excitatory neurotransmission. In this report we show that calcium elevation in spinal cord synaptosomes decreases the levels of glycine transporter, GlyT1, N-terminal immunoreactivity, and that this decrease can be blocked by calpain inhibitor. Sequencing of GST fusion proteins containing the N-terminal domains of GlyT1A and B splice variants cleaved with rat recombinant calpain identified calpain cleavage sites after glycine 17 in GlyT1B and N-terminally of the first conserved arginine residue in both GlyT1A and GlyT1B. Expression in HEK293 cells revealed that truncation of the N-terminus of GlyT1 results in significant inhibition of glycine uptake. A syntaxin1A GST fusion protein was able to pull-down N-terminally deleted GlyT1, indicating that calpain cleavage does not eliminate syntaxin1A binding. These results suggest that calpain cleavage may regulate the transport activity/turnover of GlyT1 in vivo by cleaving its N-terminal domain.  相似文献   

4.
The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [32P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23–40%-inhibition on Vmax was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.  相似文献   

5.
The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [32P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23-40%-inhibition on Vmax was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.  相似文献   

6.
Glycine transporter inhibitors modulate the transmission of pain signals. Since it is well known that extracts from medicinal plants such as Chelidonium majus exhibit analgesic properties, we investigated the effects of alkaloids typically present in this plant on glycine transporters. We found that chelerythrine and sanguinarine selectively inhibit the glycine transporter GlyT1 with comparable potency in the low micromolar range while berberine shows no inhibition at all. At this concentration both alkaloids only minimally affected transport of the closely related glycine transporter GlyT2, suggesting that the effect is not mediated by the inhibitory activity of these alkaloids on the Na(+)/K(+) ATPase. GlyT1 inhibition was time-dependent, noncompetitive and increased with glycine concentration. While chelerythrine inhibition was reversible, the effect of sanguinarine was resistant to wash out. These results suggest that benzophenanthridine alkaloids interact with glycine transporters and at low micromolar range selectively target glycine transporter GlyT1.  相似文献   

7.
Inhibition of the glycine transporter GlyT1 is a potential strategy for the treatment of schizophrenia. A novel series of GlyT1 inhibitors and their structure-activity relationships (SAR) are described. Members of this series are highly potent and selective transport inhibitors which are shown to elevate glycine levels in cerebrospinal fluid.  相似文献   

8.
Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca2+-ATPase (PMCA) isoforms 2 and 3, and Na+/Ca2+-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2–3·NCX complex would help Na+/K+-ATPase in controlling local Na+ increases derived from GlyT2 activity after neurotransmitter release.  相似文献   

9.
Post-synaptic actions of glycine are terminated by specialized transporters. There are two genes encoding glycine transporters, GlyT1 and GlyT2. Glycine acts as a co-agonist at N -methyl- d -aspartate glutamatergic receptors (NMDARs). Blockage of GlyT1 enhances NMDAR function by controlling ambient glycine concentrations. Using whole-cell patch-clamp recordings of acute hippocampal slices, we investigated NMDAR kinetics of CA1 pyramidal neurons of mice expressing 50% of GlyT1 (GlyT1+/−). In this study, we report that the glycine modulatory site of the NMDAR at CA1 synapses is saturated in GlyT1+/− but not in wild-type (WT) mice. We also found that the effect of ifenprodil, a highly selective NR2B-containing-NMDAR antagonist, is significantly reduced at CA1 synapses in GlyT1+/− compared to WT mice while immunoblotting experiments do not show significant differences for NR1, NR2A-B-C-D subunits in both types of mice, suggesting alteration in NR2B-containing-NMDAR localization under a state of chronic saturating level of endogenous glycine. Using a pharmacological approach with MK-801 and DL-TBOA, we discriminated synaptic vis-à-vis extra-synaptic NMDARs. We found that NR2B-containing-NMDARs are expressed at a higher level in the extra-synaptic area of CA1 pyramidal neurons from GlyT1+/− compared to WT mice. Our results demonstrate that chronic saturating level of glycine induces significant changes in NMDAR localization and kinetic. Therefore, results from our study should help to gain a better understanding of the role of glycine in pathological conditions.  相似文献   

10.
The neuronal (GlyT2) and glial (GlyT1) glycine transporters, two members of the Na(+)/Cl(-)-dependent neurotransmitter transporter superfamily, differ by many aspects, such as substrate specificity and Na(+) coupling. We have characterized under voltage clamp their reactivity toward the membrane impermeant sulfhydryl reagent [2-(trimethylammonium)-ethyl]-methanethiosulfonate (MTSET). In Xenopus oocytes expressing GlyT1b, application of MTSET reduced to the same extent the Na(+)-dependent charge movement, the glycine-evoked current, and the glycine uptake, indicating a complete inactivation of the transporters following cysteine modification. In contrast, this compound had no detectable effect on the glycine uptake and the glycine-evoked current of GlyT2a. The sensitivities to MTSET of the two transporters can be permutated by suppressing a cysteine (C62A) in the first extracellular loop (EL1) of GlyT1b and introducing one at the equivalent position in GlyT2a, either by point mutation (A223C) or by swapping the EL1 sequence (GlyT1b-EL1 and GlyT2a-EL1) resulting in AFQ <--> CYR modification. Inactivation by MTSET was five times faster in GlyT2a-A223C than in GlyT2a-EL1 or GlyT1b, suggesting that the arginine in position +2 reduced the cysteine reactivity. Protection assays indicate that EL1 cysteines are less accessible in the presence of all co-transported substrates: Na(+), Cl(-), and glycine. Application of dithioerythritol reverses the inactivation by MTSET of the sensitive transporters. Together, these results indicate that EL1 conformation differs between GlyT1b and GlyT2a and is modified by substrate binding and translocation.  相似文献   

11.
Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors.  相似文献   

12.
We describe a novel series of inhibitors of the type 1 glycine transporter (GlyT1) as an approach to relieving the glutamatergic deficit that is thought to underlie schizophrenia. Synthesis and SAR follow-up of a series of octahydro-cyclopenta[c]pyrrole derivatives afforded potent in vitro inhibition of GlyT1 as well as in vivo activity in elevating CSF glycine. We also found that a 3-O(c-pentyl), 4-F substituent may serve as a surrogate for the widely used 3-trifluoromethoxy group, suggesting its application as an isostere for future medicinal chemistry studies.  相似文献   

13.
In this study, 2-iodo substituted 1-methylpiperidin-2-yl benzamide derivatives were synthesized and evaluated as candidate SPECT imaging agents for glycine transporter 1 (GlyT1). In JAR cells, which predominantly express GlyT1, 2-iodo N-[(S)-{(S)-1-methylpiperidin-2-yl}(phenyl)methyl]3-trifluoromethyl-benzamide (5) showed excellent inhibitory activity of [(3)H]glycine uptake (IC(50)=2.4 nM). Saturation assay in rat cortical membranes revealed that [(125)I]5 had a single high affinity binding site with a K(d) of 1.54 nM and a B(max) of 3.40 pmol/mg protein. In vitro autoradiography demonstrated that [(125)I]5 showed consistent accumulation with GlyT1 expression. The in vitro binding was greatly inhibited by GlyT1 inhibitors but not by other site ligands, which suggested the high specific binding of [(125)I]5 with GlyT1. In the biodistribution and ex vivo autoradiography studies using mice, [(125)I]5 showed high blood-brain barrier permeability (1.68-2.17% dose/g at 15-60 min) and similar regional brain distribution pattern with in vitro results. In addition, pre-treatment of GlyT1 ligands resulted in significant decrease of [(125)I]5 binding in the GlyT1-rich regions. This preliminary study demonstrated that radio-iodinated 5 is a promising SPECT imaging probe for GlyT1.  相似文献   

14.
Supplisson S  Roux MJ 《FEBS letters》2002,529(1):93-101
In the brain, neurons and glial cells compete for the uptake of the fast neurotransmitters, glutamate, GABA and glycine, through specific transporters. The relative contributions of glia and neurons to the neurotransmitter uptake depend on the kinetic properties, thermodynamic coupling and density of transporters but also on the intracellular metabolization or sequestration of the neurotransmitter. In the case of glycine, which is both an inhibitory transmitter and a neuromodulator of the excitatory glutamatergic transmission as a co-agonist of N-methyl D-aspartate receptors, the glial (GlyT1b) and neuronal (GlyT2a) transporters differ at least in three aspects: (i) stoichiometries, (ii) reverse uptake capabilities and (iii) pre-steady-state kinetics. A 3 Na(+)/1 Cl(-)/gly stoichiometry was established for GlyT2a on the basis of a 2 charges/glycine flux ratio and changes in the reversal potential of the transporter current as a function of the extracellular glycine, Na(+) and Cl(-) concentrations. Therefore, the driving force available for glycine uphill transport in neurons is about two orders of magnitude larger than for glial cells. In addition, GlyT2a shows a severe limitation for reverse uptake, which suggests an essential role of GlyT2a in maintaining a high intracellular glycine pool, thus facilitating the refilling of synaptic vesicles by the low affinity, low specificity vesicular transporter VGAT/VIAAT. In contrast, the 2 Na(+)/1 Cl(-)/gly stoichiometry and bi-directional transport properties of GlyT1b are appropriate for the control of the extracellular glycine concentration in a submicromolar range that can modulate N-methyl D-aspartate receptors effectively. Finally, analysis of the pre-steady-state kinetics of GlyT1b and GlyT2a revealed that at the resting potential neuronal transporters are preferentially oriented outward, ready to bind glycine, which suggests a kinetic advantage in the uptake contest.  相似文献   

15.
The cytoplasmic regions of neurotransmitter transporters play an important role in their trafficking. This process is, to a high extent, tuned by calcium and calcium binding proteins, but the exact molecular connection are still not fully understood. In this work we found that the C-terminal region of the mouse glycine transporter GlyT1b is able to specifically interact with calmodulin in the presence of calcium. We found that several GlyT1 C-terminal mutations, including those in the ER retention signal, either eliminate or increase calmodulin interaction in vitro. In tissue-culture-expressed GlyT1 at least two of these mutations altered the sensitivity of GlyT1 surface expression and glycine uptake to calmodulin antagonists. These results suggest the possible involvement of calmodulin or calmodulin-like interactions in the regulation of GlyT1C-mediated transporter trafficking.  相似文献   

16.
Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs). The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC)-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB) ubiquitin C-terminal hydrolase-L1 (UCHL1), as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5) are the second most common cause of human hyperekplexia.  相似文献   

17.
In caudal regions of the CNS, glycine constitutes the major inhibitory neurotransmitter. Here, we describe a mouse line that expresses Cre recombinase under the control of a BAC transgenic glycine transporter 2 (GlyT2) promoter fragment. Mating of GlyT2‐Cre mice with the Cre reporter mouse lines Rosa26/LacZ and Rosa26/YFP and analysis of double transgenic offsprings revealed strong transgene activity in caudal regions of the central nervous system, i.e., brain stem and spinal cord. Some additional Cre expression was observed in cortical and cerebellar regions. In brain stem and spinal cord, Cre expressing cells were identified as glycinergic interneurons by staining with GlyT2‐ and glycine‐immunoreactive antibodies; here, >80% of the glycine‐immunoreactive cells expressed the Cre reporter protein. These data indicate that GlyT2‐Cre mice are a useful tool for the genetic manipulation of glycinergic interneurons. genesis 48:437–445, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Neuronal and glial glycine transporters have different stoichiometries   总被引:14,自引:0,他引:14  
Roux MJ  Supplisson S 《Neuron》2000,25(2):373-383
A neurotransmitter transporter can potentially mediate uptake or release of substrate, and its stoichiometry is a key factor that controls the driving force and thus the neurotransmitter flux direction. We have used a combination of electrophysiology and radio-tracing techniques to evaluate the stoichiometries of two glycine transporters involved in glycinergic or glutamatergic transmission. We show that GlyT2a, a transporter present in glycinergic boutons, has a stoichiometry of 3 Na+/Cl-/glycine, which predicts effective glycine accumulation in all physiological conditions. GlyT1b, a glial transporter, has a stoichiometry of 2 Na+/Cl-/ glycine, which predicts that glycine can be exported or imported, depending on physiological conditions. GlyT1b may thus modulate glutamatergic synapses by increasing or decreasing the glycine concentration around N-methyl-D-aspartate receptors (NMDARs).  相似文献   

19.
The glycine transporter 2 (GlyT2) belongs to the family of Na+/CL--dependent plasma membrane transporters and is localized on the presynaptic terminals of glycinergic neurons. GlyT2 differs from other family members by its extended N-terminal cytoplasmic region. We report that activation of a Ca2+-dependent protease, most likely calpain, in spinal cord synaptosomes or cultured spinal cord neurons, results in partial proteolysis of GlyT2. Regions sensitive to calpain cleavage in vivo are located in the N-terminal and, to a lesser extent, C-terminal regions of the transporter protein. Incubation of a GlyT2 N-terminal fusion protein with spinal cord extract in the presence of calcium followed by protein sequence analysis localized the major N-terminal cleavage site after methionine 156, with a second cleavage site being situated after glycine 164. Interestingly, the size of the N-terminally truncated GlyT2 protein (70 kDa) is similar to that of most other transporter family members, and truncated GlyT2 displayed full transport activity upon expression in HEK293 cells. Our data suggest that Ca2+-triggered proteolysis may contribute to the regulation of GlyT2 trafficking and/or function in the neuronal plasma membrane.  相似文献   

20.
Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1). Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40–50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号