首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Falcipain-2 is a cysteine protease of the malaria parasite Plasmodium falciparum that plays a key role in the hydrolysis of hemoglobin, a process that is required by intraerythrocytic parasites to obtain amino acids. In this work we show that the polysulfonated napthylurea suramin is capable of binding to falcipain-2, inhibiting its catalytic activity at nanomolar concentrations against both synthetic substrates and the natural substrate hemoglobin. Kinetic measurements suggest that the inhibition occurs through an noncompetitive allosteric mechanism, eliciting substrate inhibition. Smaller suramin analogues and those with substituted methyl groups also showed inhibition within the nanomolar range. Our results identify the suramin family as a potential starting point for the design of falcipain-2 inhibitor antimalarials that act through a novel inhibition mechanism.  相似文献   

2.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are major hemoglobinases and potential antimalarial drug targets. Our previous studies demonstrated that these enzymes are equipped with specific domains for specific functions. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. As with many proteases, falcipain-2 and falcipain-3 are synthesized as inactive zymogens. However, it is not known how these enzymes get activated for hemoglobin hydrolysis. In this study, we are presenting the first evidence that salt bridges and hydrophobic interactions are required for the auto activation of cysteine proteases of P.falciparum. To investigate the mechanism of activation of these enzymes, we expressed the wild type protein as well as different mutants in E.coli. Refolding was assessed by circular dichroism. Both CD and trans activation data showed that the wild type enzymes and mutants are rich in secondary structures with similar folds. Our study revealed that prodomain-mature domain of falcipain-2 and falcipain-3 interacts via salt bridges and hydrophobic interactions. We mutated specific residues of falcipain-2 and falcipain-3, and evaluated their ability to undergo auto processing. Mutagenesis result showed that two salt bridges (Arg 185 - Glu 221, Glu 210 - Lys 403) in falcipain-2, and one salt bridge (Arg 202-Glu 238) in falcipain-3, play crucial roles in the activation of these enzymes. Further study revealed that hydrophobic interactions present both in falcipain-2 (Phe214, Trp449 Trp 453) and falcipain-3 (Phe 231 Trp 457 Trp 461) also play important roles in the activation of these enzymes. Our results revealed the interactions involved in auto processing of two major hemoglobinases of malaria parasite.  相似文献   

3.
Herein we report the synthesis of a series of novel constrained peptidomimetics 2–10 endowed with a dipeptide backbone (d-Ser-Gly) and a vinyl ester warhead, structurally related to a previously identified lead compound 1, an irreversible inhibitor of falcipain-2, the main haemoglobinase of lethal malaria parasite Plasmodium falciparum. The new compounds were evaluated for their inhibition against falcipain-2, as well as against cultured P. falciparum. The inhibitory activity of the synthesized compounds was also evaluated against another protozoal cysteine protease, namely rhodesain of Trypanosoma brucei rhodesiense.  相似文献   

4.
The reaction of thiosemicarbazones (TSCs) with [AuI(THT)Cl], THT = tetrahydrothiophene, has been investigated. The resulting gold(I) complexes have been characterized by a range of spectroscopic techniques: NMR spectroscopy, mass spectrometry, microanalysis and infrared spectroscopy. The in vitro antimalarial data for gold(I) TSC complexes suggests that coordination of gold(I) to TSCs enhanced their efficacy against the malaria parasite Plasmodium falciparum and their inhibition of the parasite cysteine protease falcipain-2.  相似文献   

5.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are hemoglobinases and potential antimalarial drug targets. The falcipain-2' gene was identified recently and is nearly identical in sequence to falcipain-2. The product of this gene has not been studied previously. The mature protease domain of falcipain-2' was expressed in Escherichia coli, purified, and refolded to active enzyme. Functional analysis revealed similar biochemical properties to those of falcipain-2, including pH optima (pH 5.5-7.0), reducing requirements, and substrate preference. Studies with cysteine protease inhibitors showed similar inhibition of falcipain-2 and falcipain-2', although specificities were not identical. Considering activity against the presumed biological substrate, both enzymes readily hydrolyzed hemoglobin. Our results confirm that falcipain-2' is an active hemoglobinase and suggest that falcipain-2 and falcipain-2' play similar roles in erythrocytic parasites but that, for promising cysteine protease inhibitors, it will be important to confirm activity against this additional target.  相似文献   

6.
Linking two tacrine molecules results in a tremendous increase of activity against Plasmodia in comparison to the monomer. This finding prompted the synthesis of a library of monomeric and dimeric tacrine derivatives in order to derive structure–activity relationships. The most active compounds towards chloroquine sensitive Plasmodium strain 3D7 and chloroquine resistant strain Dd2 show IC50 values in the nanomolar range of concentration, low cytotoxicity and target the cysteine protease falcipain-2, which is essential for parasite growth.  相似文献   

7.
Plasmodium falciparum cysteine protease falcipain-2 (FP-2) is a promising target for antimalarial chemotherapy and inhibition of this protease affects the growth of parasite adversely. A series of pyrido[1,2-a]pyrimidin-4-ones were synthesized and evaluated for their in vitro FP-2 inhibitory potential. Compounds (14,17) showed excellent FP-2 inhibition and can serve as lead compounds for further development of potent FP-2 inhibitors as potential antimalarial drugs.  相似文献   

8.
Malaria is a disease caused by Plasmodium parasites that affects hundreds of millions of people. Plasmodium proteases are involved in invasion, erythrocyte egress and degradation of host proteins. Falcipains are well-studied cysteine peptidases located in P. falciparum food vacuoles that participate in hemoglobin degradation. Cystatins are natural cysteine protease inhibitors that are implicated in a wide range of regulatory processes. Here, we report that a cystatin from sugarcane, CaneCPI-4, is selectively internalized into P. falciparum infected erythrocytes and is not processed by the parasite proteolytic machinery. Furthermore, we demonstrated the inhibition of P. falciparum cysteine proteases by CaneCPI-4, suggesting that it can exert inhibitory functions inside the parasites. The inhibition of the proteolytic activity of parasite cells is specific to this cystatin, as the addition of an anti-CaneCPI-4 antibody completely abolished the inhibition. We extended the studies to recombinant falcipain-2 and falcipain-3 and demonstrated that CaneCPI-4 strongly inhibits these enzymes, with IC50 values of 12 nM and 42 nM, respectively. We also demonstrated that CaneCPI-4 decreased the hemozoin formation in the parasites, affecting the parasitemia. Taken together, this study identified a natural molecule as a potential antimalarial that specifically targets falcipains and also contributes to a better understanding of macromolecule acquisition by Plasmodium falciparum infected RBCs.  相似文献   

9.
BackgroundThe malaria parasite Plasmodium falciparum expresses four related papain-family cysteine proteases known as falcipains. These proteases play critical roles in the parasite life cycle, and as such are potential targets for new modes of antimalarial chemotherapy, as discussed in this review.Scope of reviewThis review summarizes available knowledge describing falcipain cysteine proteases of malaria parasites.Major conclusionsBased on available data the falcipains can be broken into two sub-families, the falcipain-1 and the falcipain-2/3 sub-families. Falcipain-1 has been difficult to study; it appears to play its most important roles in nonerythrocytic parasites, but not the erythrocytic stage responsible for human disease. Falcipain-2 and falcipain-3 have similar biochemical features, and are expressed sequentially during the erythrocytic cycle. Inhibition of either of these enzymes blocks hemoglobin hydrolysis and completion of the parasite developmental cycle. Knockout of falcipain-2 blocks hemoglobin hydrolysis, but parasites recover, presumably due to subsequent expression of falcipain-3. Knockout of falcipain-3 has not been possible, suggesting that the protease is essential for erythrocytic parasites. Determination of structures of falcipains and extensive chemistry efforts have facilitated identification of numerous small molecule falcipain inhibitors as potential new antimalarial agents. Other malaria parasites express close homologs of falcipain-1 and falcipain-2/3 proteases, suggesting that agents that target the falcipains will also be active against other human malaria parasites.General Significance. Falcipain-2 and falcipain-3 play vital roles during the erythrocytic stage of infection with P. falciparum and thus are promising targets for new agents to treat malaria.  相似文献   

10.
Falcipain-2, a papain family cysteine protease of the malaria parasite Plasmodium falciparum, plays a key role in parasite hydrolysis of hemoglobin and is a potential chemotherapeutic target. As with many proteases, falcipain-2 is synthesized as a zymogen, and the prodomain inhibits activity of the mature enzyme. To investigate the mechanism of regulation of falcipain-2 by its prodomain, we expressed constructs encoding different portions of the prodomain and tested their ability to inhibit recombinant mature falcipain-2. We identified a C-terminal segment (Leu155–Asp243) of the prodomain, including two motifs (ERFNIN and GNFD) that are conserved in cathepsin L sub-family papain family proteases, as the mediator of prodomain inhibitory activity. Circular dichroism analysis showed that the prodomain including the C-terminal segment, but not constructs lacking this segment, was rich in secondary structure, suggesting that the segment plays a crucial role in protein folding. The falcipain-2 prodomain also efficiently inhibited other papain family proteases, including cathepsin K, cathepsin L, cathepsin B, and cruzain, but it did not inhibit cathepsin C or tested proteases of other classes. A structural model of pro-falcipain-2 was constructed by homology modeling based on crystallographic structures of mature falcipain-2, procathepsin K, procathepsin L, and procaricain, offering insights into the nature of the interaction between the prodomain and mature domain of falcipain-2 as well as into the broad specificity of inhibitory activity of the falcipain-2 prodomain.  相似文献   

11.
Papain-family cysteine proteases of the malaria parasite Plasmodium falciparum, known as falcipains, are hemoglobinases and potential drug targets. Available data suggest that papain-family proteases require prodomains for correct folding into functional conformations. However, in prior studies of falcipain-2, an Escherichia coli-expressed construct containing only a small portion of the prodomain refolded efficiently, suggesting that this enzyme differs in this regard from other papain-family enzymes. To better characterize the determinants of folding for falcipain-2, we expressed multiple pro- and mature constructs of the enzyme in E. coli and assessed their abilities to refold. Mature falcipain-2 refolded into active protease with very similar properties to those of proteins resulting from the refolding of proenzyme constructs. Deletion of a 17-amino acid amino-terminal segment of the mature protease yielded a construct incapable of correct folding, but inclusion of this segment in trans allowed folding to active falcipain-2. The prodomain was a potent, competitive, and reversible inhibitor of mature falcipain-2 (K(i) 10(-10) m). Our results identify a chaperone-like function of an amino-terminal segment of mature falcipain-2 and suggest that protease inhibition, but not the mediation of folding, is a principal function of the falcipain-2 prodomain.  相似文献   

12.
1,4,7-Trisubstituted isoquinolines were designed, synthesized and evaluated for their inhibition against Plasmodium falciparum cysteine protease falcipain-2. The 1-benzyloxyphenyl-dihydroisoquinoline and -isoquinoline derivatives were found to exhibit better activity against falcipain-2 than their corresponding 1-hydroxyphenyl or 1-methoxyphenyl analogues. The docking scores correlate with the IC(50) values of compounds and give a high coefficient correlation of 0.94.  相似文献   

13.
A targeted series of phenolic Mannich bases of benzaldehyde and (thio)semicarbazone derivatives were synthesized and evaluated in vitro against the malarial cysteine protease falcipain-2 and a chloroquine resistant strain (W2) of Plasmodium falciparum. A novel series of 4-aminoquinoline semicarbazones were the most effective inhibitors of falcipain-2 (most potent inhibitor had IC(50)=0.63microM) while a bisquinoline semicarbazone compound 8f was the most potent antimalarial compound with an IC(50) of 0.07microM against W2. Compound 8f also weakly inhibited falcipain-2, with an IC(50) of 3.16microM, although its principal antiparasitic activity did not appear to be due to inhibition of this enzyme.  相似文献   

14.
A new series of peptidomimetic pseudo-prolyl-homophenylalanylketones were designed, synthesized and evaluated for inhibition of the Plasmodium falciparum cysteine proteases falcipain-2 (FP-2) and falcipain-3 (FP-3). In addition, the parasite killing activity of these compounds in human blood-cultured P. falciparum was examined. Of twenty-two (22) compounds synthesized, one peptidomimetic comprising a homophenylalanine-based α-hydroxyketone linked Cbz-protected hydroxyproline (39) showed the most potency (IC50 80 nM against FP-2 and 60 nM against FP-3). In silico analysis of these peptidomimetic analogs offered important protein–ligand structural insights including the role, by WaterMap, of water molecules in the active sites of these protease isoforms. The pseudo-dipeptide 39 and related compounds may serve as a promising direction forward in the design of competitive inhibitors of falcipains for the effective treatment of malaria.  相似文献   

15.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 hydrolyze hemoglobin in an acidic food vacuole to provide amino acids for erythrocytic malaria parasites. Trafficking to the food vacuole has not been well characterized. To study trafficking of falcipains, which include large membrane-spanning prodomains, we utilized chimeras with portions of the proteases fused to green fluorescent protein. The prodomains of falcipain-2 and falcipain-3 were sufficient to target green fluorescent protein to the food vacuole. Using serial truncations, deletions, and point mutations, we showed that both a 20-amino acid stretch of the lumenal portion and a 10-amino acid stretch of the cytoplasmic portion of the falcipain-2 prodomain were required for efficient food vacuolar trafficking. Mutants with altered trafficking were arrested at the plasma membrane, implicating trafficking via this structure. Our results indicate that falcipains utilize a previously undescribed bipartite motif-dependent mechanism for targeting to a hydrolytic organelle, suggesting inhibition of this unique mechanism as a new means of antimalarial chemotherapy.  相似文献   

16.
The Plasmodium falciparum cysteine protease falcipain-2 is a trophozoite hemoglobinase and potential antimalarial drug target. Unlike other studied papain family proteases, falcipain-2 does not require its prodomain for folding to active enzyme. Rather, folding is mediated by an amino-terminal extension of the mature protease. As in related enzymes, the prodomain is a potent inhibitor of falcipain-2. We now report further functional evaluation of the domains of falcipain-2 and related plasmodial proteases. The minimum requirement for folding of falcipain-2 and four related plasmodial cysteine proteases was inclusion of a 14-15-residue amino-terminal folding domain, beginning with a conserved Tyr. Chimeras of the falcipain-2 catalytic domain with extensions from six other plasmodial proteases folded normally and had kinetic parameters (k(cat)/K(m) 124,000-195,000 M(-1) s(-1)) similar to those of recombinant falcipain-2 (k(cat)/K(m) 120,000 M(-1) s(-1)), indicating that the folding domain is functionally conserved across the falcipain-2 subfamily. Correct folding also occurred when the catalytic domain was refolded with a separate prodomain-folding domain construct but not with an isolated folding domain peptide. Thus, the prodomain mediated interaction between the other two domains when they were not covalently bound. The prodomain-catalytic domain interaction was independent of the active site, because it was blocked by free inactive catalytic domain but not by the active site-binding peptide leupeptin. The folded catalytic domain retained activity after purification from the prodomain-folding domain construct (k(cat)/K(m) 168,000 M(-1) s(-1)), indicating that the folding domain is not required for activity once folding has been achieved. Activity was lost after nonreducing gelatin SDS-PAGE but not native gelatin PAGE, indicating that correct disulfide bonds are insufficient to direct appropriate folding. Our results identify unique features of the falcipain-2 subfamily with independent mediation of activity, folding, and inhibition.  相似文献   

17.
Trophozoite cysteine protease (TCP) activity, isolated from Plasmodium falciparum soluble 100,000 g extracts, displayed native falcipain-1 kinetic parameters towards peptidyl substrates. The labelling of either isolated TCP or soluble 100,000 g extracts by a cystatin-derived probe (biotinyl-Leu-Val-Gly-CHN2) revealed a single band of ca. 30 kDa by SDS-PAGE, which was resolved into four spots displaying isoelectric points (pI) from 4.7 to 5.3 after two-dimensional separation. The molecular mass and pI correspond to those of falcipain-3, falcipain-2, falcipain-2' and falcipain-1, respectively. The two central spots were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry as falcipain-2 and falcipain-2'. This activity-based probe represents a potential tool for profiling active falcipains in parasites.  相似文献   

18.
The availability of the crystal structure of falcipain-3, knowledge of the peptides carrying the 7-aminocoumarin moiety as falcipain-3 ligands/substrates, and a need for new antimalarial agents stimulated us to look at the possibility of finding some novel falcipain-3 inhibitors. In this paper, we report the effect of substitution at the 7-amino position of the coumarin nucleus on the inhibition of falcipain-3, which is a well-validated antimalarial target. The de novo drug design was assisted by QSAR studies that shed light on the binding patterns of known and the newly designed inhibitors, thus taking this discovery process to the next level.  相似文献   

19.
Coumarin containing pyrazoline derivatives have been synthesized and tested as inhibitors of in vitro development of a chloroquine-sensitive (MRC-02) and chloroquine-resistant (RKL-2) strain of Plasmodium falciparum and in vivo Plasmodium berghei malaria. Docking study was also done on cysteine protease falcipain-2 which showed that the binding pose of C-14 molecule and epoxysuccinate, inhibitor of falcipain-2, binds in the similar pattern. The most active antimalarial compound was 3-(1-benzoyl-5-(4-flurophenyl)-4,5-dihydro-1H-pyrazol-3yl)-7-(diethyamino)-2H-chromen-2-one C-14, with an IC50 of 4.21?µg/ml provided complete protection to the infected mice at 24?mg/kg X 4?days respectively.  相似文献   

20.
Falcipain-2 is one of the principal hemoglobinases of Plasmodium falciparum, a human malaria parasite. It has a typical papain family cysteine protease structural organization, a large pro-domain, a mature domain with conserved active site amino acids. Pro-domain of falcipain-2 also contains two important conserved motifs, "GNFD" and "ERFNIN." The "GNFD" motif has been shown to be responsible for correct folding and stability in case of many papain family proteases. In the present study, we carried out site-directed mutagenesis to assess the roles of active site residues and pro-domain residues for the activity of falcipain-2. Our results showed that substitutions of putative active site residues; Q36, C42, H174, and N204 resulted in complete loss of falcipain-2 activity, while W206 and D155 mutants retained partial/complete activity in comparison to the wild type falcipain-2. Homology modeling data also corroborate the results of mutagenesis; Q36, C42, H174, N204, and W206 residues form the active site loop of the enzyme and D155 lie outside the active pocket. Substitutions in the pro-region did not affect the activity of falcipain-2. This implies that falcipain-2 shares active site residues with other members of papain family, however pro-region of falcipain-2 does not play any role in the activity of enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号